
Editable Dynamic Textures

Gianfranco Doretto and Stefano Soatto

UCLA Computer Science Department
Los Angeles, CA 90095
{doretto, soatto}@ucla.edu

Abstract

We present a simple and efficient algorithm for modify-
ing the temporal behavior of “dynamic textures,” i.e. se-
quences of images that exhibit some form of temporal regu-
larity, such as flowing water, steam, smoke, flames, foliage
of trees in wind.

1. Introduction

Our goal in this work is todesign algorithms for syn-
thesizing and editing realistic sequences of images of dy-
namic scenes that exhibit some form of temporal stationar-
ity. While we will make this concept precise in Section 2.1,
in brief, such scenes include flowing water, steam, smoke,
flames, foliage of trees in wind, crowds, dense traffic flow
etc. This is an image-based rendering task, and in particular
we are interested in synthesizing thetemporalbehavior of
the scene.

1.1. Video-based modeling

The goal thus described is traditionally approached ei-
ther by physics-based rendering(PBR) techniques or by
image-based rendering(IBR) techniques. In PBR tech-
niques, a model of the scene is derived from first principles,
then approximated, and finally simulated. Such techniques
have been successfully applied for synthesizing sequences
of natural phenomena such as smoke, fire etc. (see for in-
stance [14, 8] and references therein) as well as walking
gaits ([9] and references) and mechanical systems ([3] and
references). The main advantage of these techniques is the
extent in which the synthesis can be manipulated, resulting
in great editing power (see e.g. [12]).

While conceptually PBR models are the most principled
and elegant, they have the disadvantage of being computa-
tionally expensive, and of not taking into account the ul-
timate beneficiary of the simulation: the viewer. In fact,
physical details in the model can be perceptually irrelevant,
whereas some simplifications of the physical model can
drastically alter the final perceived process to great detri-
ment of realism1.

1Indeed, since the complexity of the physical world greatly exceeds
the complexity of the visual signal (which is the ultimate product of the
simulation), great efforts in building a physically realistic model may go to

IBR techniques address this issue at the outset, by gen-
erating synthetic sequences of images without building a
physical model of the process that generate the scene.
Among IBR techniques one can distinguish between so-
called “procedural” techniques that forego the use of a
model altogether and generate synthetic images by clever
concatenation or repetition of image data [13], and IBR
techniques that rely on a model, albeit not a physical one.
In particular, IBR dynamical models are not models of the
scene, but models of thevisual signal, i.e. the image se-
quence itself. Such models can be deterministic or stochas-
tic, and in general they fail to capture the correct geome-
try (shape), photometry (radiance) and dynamics (motion)
of the scene. Instead, they capture a mixture of the three
that is equivalent once visualized as an image. Examples of
work in this category are [6, 5, 17]. We call this category
video-based modeling2

A common shortcoming of all IBR techniques is their
lack of flexibility. While the outcome of procedural algo-
rithms or the simulation of video-based models produces
in general very realistic results, the procedure is extremely
hard to modify in ways that produce realistic or even mean-
ingful results. Most IBR techniques merely allow the editor
to extend the original sequence in space and time. Even
the seemingly trivial task of speeding up or slowing down a
fire, or a walking gait, is a challenge within the IBR frame-
work, because of the lack of physical parameters that can be
manipulated.

The focus of this paper is on editing video-based models.

1.2. Other related work

Since our emphasis is on time-varying textures, we do
not address the vast literature on 2D (static) textures here.
The problem of modeling dynamic textures has been first
addressed by [11], and subsequently by [15]. Procedu-
ral techniques have then been proposed by [13] and [18].
Time-varying texture synthesis algorithms have also been
proposed as extensions of 2D texture algorithms (see for

waste during visualization and human perception.
2Since from images alone one cannot disentangle the correct (arbitrary)

geometry, photometry and dynamics of the scene, one could argue that a
phenomenological model, i.e. a model of the visual signal, is the most one
can afford, and is sufficient as long as the final goal is to produce an image.

Finite Input Video Clip Learning Editing Synthesis Infinite Output Video Clip

z −1

A

Q

~

C
~

~

A C Q^ ^ ^

Figure 1. System diagram.A finite length input video clip is fed to theLearning modulewhich performs a closed-form
suboptimal estimation of the model parameters. These are represented as a point on the model space manifold. The
model parameters are then fed to theEditing modulewhich allows manipulating groups of parameters while enforcing
causality, stability, minimum-phase and other constraints that are necessary to yield a realistic perceptual outcome. The
parameters are then fedon-lineto theSynthesis modulethat interactively synthesizes live video.

instance [2] with [4]). Dynamic texture synthesis has been
addressed in [6], and textured motions in [17]. [7] addresses
modeling for the purpose of matching.

1.3. System overview and contributions of this work
Referring to Figure 1, the overall system described in

this paper takes two types of input and produces one output.
The inputs are (a) a finite video clip of a “dynamic texture”
and (b) a certain set of values for a preset number of editing
parameters. The notion of “dynamic texture” will be made
precise in Section 2, and includes foliage of trees in wind,
water, smoke etc. The output of the system is an infinite
video of a dynamic texture similar to the original one, that
can be interactively modified by acting on the editing pa-
rameters (b). In Section 4 we describe the interactive mod-
ification of the speed of the simulation (including positive
and negative speeds), the spatial scales and the “intensity”
of the simulation.

The overall system is composed of several “modules.”
The first module (“Learning”) takes as input the original
video clip and produces a representation of a dynamic tex-
ture in the form of a parametric dynamical model. This is
borrowed from prior work [6] and is summarized in Sect. 2.

The novel content of this paper is in the second module,
“Editing,” which is described in Section 3. This module
allows the editor to (1) simulate a novel sequence that has
the same temporal statistics as the input video clip, and to
(2) interactively modify the temporal characteristics of the
simulation in order to achieve the desired perceptual effect.

To the best of our knowledge, this paper represents the
first attempt to interactively modify the temporal statistics
of a video-based model of a dynamic texture.

2. Dynamic texture modeling
What is a “dynamic texture”? In thespatialdomain, the

word “texture” suggests some form of statistical regularity
or homogeneity. In thetemporaldomain, statistical regu-
larity is captured by the notion ofstationarity. A stochastic
process is stationary (of orderk) if the joint statistics (up
to orderk) are time-invariant3. Following [6], therefore,

3For instance, a process{I(t)} is second-order stationary if its meanĪ
.=

E[I(t)] is constant and its covarianceE[(I(t1)− Ī)(I(t2)− Ī)] only depends

we say thata sequence of images{I(t)}t=1...τ ∈ Rm repre-
sents a dynamic texture if it is a realization of a stationary
stochastic process. In the experiments reported in Section 4,
m= 320×240. In order to make the paper self-contained,
we briefly review the basic model of dynamic texture that
we will later use for editing in Section 3.

2.1. Stationarity and linear Gaussian models

In this paper we restrict our attention to processes that
aresecond-orderstationary. These processes result in what
are calledlinear dynamic textures. The name stems from
the fact that any second-order stationary process can be
represented as the output of a linear dynamical system
driven by white, zero-mean Gaussian noise [10]. These
are calledlinear Gaussian models. Therefore, if we call
y(t) = I(t)+w(t) a sequence of images corrupted by white,
zero-mean Gaussian noise{w(t)} ∈ Rm;w(t) ∼ N (0,Q),
the assumption of second-order stationarity of{y(t)} cor-
responds to the existence of a positive integern, a process
{x(t)} ∈ Rn with initial condition x0 ∈ Rn and symmetric
positive-definite matricesQ∈Rn×n andR∈Rm×m such that
{

x(t +1) = Ax(t)+v(t) x(0) = x0 ; v(t)∼N (0,Q)
y(t) = Cx(t)+w(t) w(t)∼N (0,R)

(1)
with I(t) = Cx(t), for some matrices4 A ∈ Rn×n andC ∈
Rm×n.

Among dynamic textures, linear ones are the very sim-
plest. And yet, they offer great modeling potential (see Sec-
tion 4) while being amenable to linear analysis that results
in simple analytical and computational tools, as we shall
now see.

2.2. Learning linear dynamic textures

The learning module in Figure 1 takes as input a finite,
noisy sequence of images{y(1), . . . ,y(τ)} and returns the

upont2− t1.
4Indeed, there are infinitely many matricesA,C,Q,R that give rise to

the same sample pathsy(t), forming an equivalence class. While the inter-
ested reader can consult [6] on how to obtain a unique (canonical) repre-
sentative of the equivalence class, this non-uniqueness does not have any
impact on images synthesized from the model, and will therefore be ig-
nored in this paper.

model parametersA,C,Q,R. Ideally, we would want the
maximum likelihood solution from the finite sample:

Â(τ),Ĉ(τ),Q̂(τ), R̂(τ) = arg min
A,C,Q,R

p(y(1) . . .y(τ)) (2)

The algorithm that achieves the optimum asymptotically as
τ → ∞ has been derived in [16]. Unfortunately, given the
dimensionality of our problem (m≈ 105, τ ≈ 100), this
algorithm is computationally impractical and we settle for
the simplified, suboptimal algorithm proposed in [6]. Once
properly implemented, this algorithm runs in a few seconds
on a high-end PC. The order of the modeln can be cho-
sen based on a tradeoff between realism and computational
cost by looking at the profile of the energy of the principal
components (see [6] for details).

2.3. Synthesizing dynamic textures

Once a model̂A, Ĉ, Q̂, has been learned5, new sequences
can be trivially generated by simulating the model6 (1).
This entails choosing an initial condition̂x0 (for instance
one of the original images), drawing a sample of an IID
Gaussian process with covarianceQ̂, performing one step
of the iterationx̂(t + 1) = Âx̂(t) + v̂(t) and computing the
new synthesized image asÎ(t) = Ĉx̂(t).

The two algorithms thus described allow generating syn-
thetic sequences that match the spatio-temporal statistics of
the original sequence, while never repeating7 the original
data. However, one would like to be able tomanipulatethe
simulation and alter the statistics of the synthetic sequence.
In other words, one would like to insert anediting module,
as in Figure 1, before the synthesis. This is described in the
next section.

3. Dynamic texture animation

The learning module described in Sect. 2.2 produces
matricesÂ,Ĉ,Q̂ that the synthesis module uses to generate
the synthetic sequence{Î(t)}. In principle, any modifica-
tion of the system parameters, for instanceÃ,C̃,Q̃, results
in a novel synthetic sequence{Ĩ(t)} whose spatio-temporal
statistics is altered with respect to the original sequence.
Unfortunately, casual manipulation of the model parameters
rarely results in sequences{Ĩ(t)} that have any resemblance
with realistic phenomena. First, the parameters in the model
(1) cannot be chosen arbitrarily. In fact,Ã must be stable
(eigenvalues within the complex unit circle),C̃ must have
orthogonal columns (in order to obtain a canonical realiza-
tion, see footnote 4),̃Q must be symmetric and positive-
definite. In this section we describe how to manipulate the

5For simplicity, we omit the length of the training setτ.
6Notice that the matrixR is associated with the measurement noise and

is therefore meaningless in the synthesis process (unless someone wants
to purposefully generate noisy images). For this reason, from now on we
discardR.

7Assuming a perfect random number generator.

model parameters so that the resulting simulation isadmis-
sible(i.e. stable), and how to “map” model parameters onto
phenomenological changes in the synthesized sequence.

In the following subsections we describe how to change
or invert the speed of a movie by manipulatingA, or how to
change the “intensity” of a pattern by acting onQ, or how
to create visual effects by changing the spatial frequencies
encoded inC.

3.1. Visual components and spatial scales

The learning procedure described in Section 2.2 pro-
duces a matrixĈ that has as its columns the firstn prin-
cipal components of the dataset (the singular vectors of the
covariance). These components are by construction an or-
thonormal basis that spans a subspace inRm. Therefore, an
infinitely long synthesized dynamic texture can be viewed
as a partial span of the subspace generated by the columns
of Ĉ. In practice, the statex(t) assumes values in a bounded
subset ofRn centered in0.

The principal components are also sorted from the first to
the last column ofC in such a way that the spatial frequency
they represent increases. Therefore, the first components
(first columns ofC) represent the coarse spatial scales of
the texture pattern and the last components (last columns of
C) represent the finest scales.

These considerations lead to the first type of manipula-
tion, that is the spatial scale of the simulation. One can
deform the actual subspace spanned by the principal com-
ponents by re-weighting each component. This is simply
done by substituting the matrix̂C with the matrixC̃

.= ĈW,
whereW ∈Rn×n is a diagonal matrix with the non-negative
real numbersw1, . . . ,wn as its diagonal entries. The last part
of the synthesis algorithm is therefore substituted by

Î(t) = ĈWx̂(t). (3)

3.2. Altering speed

In this section we address the problem of “speeding up”
or “slowing down” a synthetic process. Note that doubling
the speed of a movie does not merely mean running the dy-
namical system at a double frame rate but, rather, to let the
system produce half as many frames and give the visual per-
ception that the speed has been doubled. This, however,
has to be done while preserving the dynamic constraints of
the model (1), and cannot be achieved by merely skipping
frames or subsampling the original sequence.

Let us consider the decomposition̂A = VΛV−1, where
Λ is the diagonal matrix of eigenvalues andV is a
matrix whose columns are the corresponding eigenvec-
tors. If we write the eigenvalues in polar coordinates as
{|λi |exp(jψi)}i=1...n, where j is the imaginary unit, the
normalized frequencies of the system are represented by
{ψi}i=k1...kh, if h is the number of complex conjugate poles
of the system. In order to change the speed of the movie one

has to replace each frequencyψi with Ωψi , i.e. multiply the
frequencies by the constant factorΩ:

ψ̃i
.= Ωψi . (4)

Since we deal with discrete-time linear dynamical models,
there is a limit for the normalized frequencies, that cannot
exceedπ. In principle, this imposes a limit on the maximum
achievable speed. In fact, the complex conjugate poles at
higher frequency, sayψK , impose the constraintΩ≤ π/ψK .
In practice, it is possible to achieve higher speeds by just
eliminating the poles at higher frequency (i.e. set them
equal to0) once they reach the limit. Of course, the higher
the speed, the higher the number of poles annihilated, the
higher is the possibility of having a degraded quality of the
resulting movie.

So far we have not mentioned the role of the values
{|λi |}i=1...n, i.e. the distance of the poles from0. These pa-
rameters affect the duration of the modes of the system once
they have been excited. The lower they are, the shorter the
duration of the modes and vice-versa. As mentioned above,
all poles have to be inside the unit circle for the simula-
tion to be stable. Intuitively, this means that modes with
lower duration have to be heavily excited to be present if
compared to modes with higher duration (poles closer to
the unit circle). In practice, we have found that the dynamic
textures we dealt with did have the complex conjugate poles
very close to the unit circle, and varying their distance did
not produce any worthwhile visual effect that is not achiev-
able by playing with the visual components.

3.3. Reversing time
In order to reverse the time axis, so as to invert the visual

flow of a given dynamic texture, one may be tempted to
simulate the model (1) “backwards” by starting from a given
x(t) and obtainingx(t−1) from x(t) = Ax(t−1) via x(t−
1) .= A−1x(t). Unfortunately, this does not work since the
resulting model has unstable dynamics (eigenvalues outside
the complex unit circle). In practice, the simulation goes to
overflow after a few iterations.

In order to gain some intuition on how to reverse the
movie, consider a system with only a pair of complex con-
jugate polesλ1,2 = |λ |exp(±jψ), and eigenvectors of the
matrix Â given byv1 = v2

∗, where∗ denotes the complex
conjugate. It is straightforward to show that the free evo-
lution of the system (i.e. forQ̃ = 0) is equal tox(t) =
VΛtV−1x(0) = |λ |t(ejψtv1ṽ1 +e−jψtv∗1ṽ∗1), whereṽ1 is the
first row of V−1. Since we are not interested in altering
the magnitude of the modes, we consider only the harmonic
part of the state, i.e.̄x(t) .= ejψtv1ṽ1 + e−jψtv∗1ṽ∗1 and ob-
serve that, if we changeV with V∗, we obtain the quantity
x̄′(t) .= ejψtv∗1ṽ∗1 +e−jψtv1ṽ1 = x̄(−t).

The above discussion can be extended to an arbitrary
number of poles, and the reader should easily convince her-
self that, in order to reverse the time axis while maintaining

the same temporal dynamics (speed), all we need to do is to
substituteÂ = VΛV−1 with

Ã
.= V∗ΛV∗−1. (5)

3.4. Intensity

In the absence of driving noise8 v(t), the output of the
model (1) converges to a constanty(t)→ ȳ that can take one
of three equally uninteresting values: zero ifA is stable, in-
finity if it is unstable9, and a constant that depends on the
initial condition if A is critically stable (some of the eigen-
values are on the complex unit circle). Therefore, for the
synthetic sequence to have any practical interest, we must
consider the role of{v(t)}, which is a white, zero-mean
Gaussian IID process with covarianceQ.

The covarianceQ controls the intensity of the noise that
drives the simulation. WhenQ is non-zero, the inputv(t)
excites the modes of the statex(t) and causes it to evolve as
a discrete-time Brownian motion. The “size” of the eigen-
values ofQ, i.e. the intensity of the driving noise, deter-
mines how far away from the initial condition the Brownian
motion travels. In particular, since the estimatedQ̂ is sym-
metric and positive definite, there exists an orthonormal ma-
trix10 U and a diagonal matrix with positive valuesΛU such
that Q̂ = UΛUUT . The eigenvalues ofQ can be altered by
changing the elements ofΛU , which changes the intensity
of the individual components of the driving noise.

In Section 4 we show some experiments where we sim-
ply re-scale all the elements ofΛ by a positive constantα,
thus increasing (α > 1) or decreasing (α < 1) the intensity
of each component of the driving noise by the same factor.
In practice, we run the simulation after substitutingQ̃ to Q̂,
where simply

Q̃
.= αQ̂. (6)

Finally, the modified synthetic sequence can just be gener-
ated by performing the simulation with parametersÃ,C̃,Q̃
instead ofÂ,Ĉ,Q̂.

4. Results

This section describes a set of representative experiments
that illustrate the editing procedure we have proposed. The
results are best seen in the movies available on-line [1],
since paper is not a suitable medium to display dynamic
images. This section can be used as a guide to walk through
the movies.

The movies describe the novel content of this paper,
where the parametersΩ, V, α, andw1, . . . ,wn are used to
generate modified (and yet admissible) parametersÃ,Q̃,C̃

8Recall that in the synthesis phase we already havew(t) = 0.
9This is true only if the model is minimal, i.e. observable and control-

lable. The definition of these concepts is beyond the scope of this paper.
Suffices here to say that the models learned from data as explained in Sect.
2 are minimal by construction.

10UUT = UTU = I .

to modify the simulation. In our experiments we have used
some B/W movies (taken from the MIT Temporal Texture
database11), and some color movies of320×220pixels. In
all the experiments, the state dimensionn has been set to
50.

The images in Figure 2 show on the left a depiction of
the scene, and on the right the corresponding values of the
parametersΩ (speed), that ranges from0 to 3 or from−3
and0 depending on the value ofV, α (intensity) from0 to
3. The weightsw1, . . . ,wn (visual components at different
scales) have been divided in three groupsw1 = · · · = w5

(coarse scale),w6 = · · ·= w15 (medium scale),w16 = · · ·=
w50 (fine scale); their values ranges from0 to 2.

Figure 2 (“Smoke”) raw (1) shows, from left to right,
a frame where the intensity of the driving input has been
increased, which results in an apparently more “turbulent”
smoke, a frame where the coarse frequency component has
been amplified, which results in a thinner “hazy” smoke,
and one where the high frequency has been amplified, re-
sulting in a grainy, “patchy” smoke. In addition, the movie
shows changes in speed where the smoke is sped up, then
slowed down to a stop and reversed.

Figure 2 (“Ocean”) raw (2) shows, from left to right,
a frame where the intensity and the coarse and fine scales
have been amplified, which results in a “rougher” sea move-
ment with larger waves. The second image shows what we
call the “lake effect,” where the waves appear more gentle
and smooth. Finally, increasing the intensity and the fine
scale, while decreasing the coarse and middle scale results
in a “rain effect”, like rain pouring on a pond.

Figure 2 (“Fountain”) raw (3) shows how playing with
the intensity and scale parameters results in interesting ef-
fects that appear to be the results of changing the noz-
zle of the fountain, from a “spurty” fountain, to a “spray-
like” fountain. Also, the fountain can be slowed down and
brought to a complete stop.

Finally, Figure 2 (“Fire”) raw (4) shows the effects of
altering a dynamic texture of a flame, including changing
the spatial scales, speed, direction etc. Non-realistic effects
can also be achieved by altering the dynamics of each color
component independently.

4.1. Limitations and extensions

This paper presents a way of modifying the simulation of
a video-based model. Although a wide variety of different
dynamic textures can be obtained (see [1]), ours remains an
IBR model, and therefore the editing power is far from that
of PBR models. Nevertheless, IBR models are conceptually
and computationally simple, and we believe that being able
to edit them is important.

This paper presents results for the simplest form of dy-
namic textures, that islinearones. There are a number of di-

11ftp://whitechapel.media.mit.edu/pub/szummer/temporal-texture

rections in which these results can be extended. First,non-
linear dynamic textures can be modeled, where the state
evolves according tox(t +1) = f (x(t),v(t)) and the output
is obtained by a non-linear mapy(t) = h(x(t),w(t)). Sec-
ond, non-Gaussiandriving distributions can be explored.
Furthermore, one needs not be restricted to dynamic tex-
tures in two dimensions: the outputy(t) can be a (vector-
ized version of) a tensor of any rank. Therefore, one can
considerthree-dimensional dynamic textures, for instance
hair or cloth. In addition, the spatial component of the dy-
namic texture needs not live in a linear space. One can con-
sider directsynthesis over manifolds, for instance surfaces
represented in triangulated or implicit form.

Concerningcolor, in Section 4 we have shown results
where all the channels were altered in the same way. For
greater realism, one should consider the color vector as
evolving on a sphere (or another constrained color space
representation), whereas for greater creative power one may
consider editing the dynamics of each color channel inde-
pendently.

The algorithms we have described rely on modifying the
globaldynamics of the image. This, in our opinion, severely
limits their applicability. Ultimately, one should explore in-
tegrating spatio-temporalsegmentationwith our techniques,
in order to alter different portions or “layers” of the scene in
different ways, and in order to overlay various visual phe-
nomena onto existing scenes.

5. Conclusions

We have presented a method to edit the temporal statis-
tics of a sequence of second-order stationary images, which
we call “dynamic textures.” To the best of our knowledge,
work in this area is novel. Our technique consists in mod-
ifying the parameters of a linear Gaussian model, which is
learned from an input sequence according to a technique
proposed by [6], so as to maintain stability and minimal-
ity. In particular, we have described ways to edit the spatial
frequency content of the sequence, modify or reverse the
speed of the simulation and change the intensity of the driv-
ing noise.

While the techniques we describe will never allow the
editor to achieve the flexibility of physics-based models, the
hope is that, when coupled with spatial editing techniques
such as warping, segmentation and mapping, they will add
to the repertoire of tools available to game designers and
special effect editors.

Acknowledgment

Withheld during the review process.

(1)

(2)

(3)

(4)

Figure 2. (1) Smoke. Left frame: “turbulent smoke.” Middle frame: “hazy smoke.” Right frame: “patchy smoke.”
The corresponding choice of parameters is shown on the right.(2) Ocean waves.[COLOR] Left: “rough sea.” Middle:
“lake effect.” Right: “rain.” (3) Fountain. [COLOR] Left: “spray-like” fountain. Middle: “frothy” fountain. Right:
“spurty” fountain. (4) Fire. [COLOR] Different choices of parameters produce changes in the apparent nature of the
flame (different combustion characteristics).

References
[1] http://www.cs.ucla.edu/∼doretto/projects/dynamic-

textures.html.
[2] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman.

Texture mixing and texture movie synthesis using statistical
learning. IEEE Transactions on Visualization and Computer
Graphics, 7(2):120–135, 2001.

[3] R. Barzel.Physically-based modeling for computer graphics:
a structured approach. Academic Press, Inc., 1992.

[4] J. D. Bonet. Multiresolution sampling procedure for analysis
and synthesis of texture images. InProc. SIGGRAPH ’97,
pages 361–368, 1997.

[5] M. Brand. Subspace mappings for image sequences. In
Proc. Workshop Statistical Methods in Video Processing,
June 2002.

[6] G. Doretto, A. Chiuso, Y.-N. Wu, and S. Soatto. Dynamic
textures. Int. Journal of Computer Vision, 52(2):91–109,
2003.

[7] A. W. Fitzgibbon. Stochastic rigidity: image registration for
nowhere-static scenes. InProc. Int. Conf. on Computer Vi-
sion, volume 1, pages 662–669, July 2001.

[8] N. Foster and R. Fedkiw. Practical animation of liquids. In
Proc. SIGGRAPH ’01, pages 15–22, 2001.

[9] J. K. Hodgins and W. L. Wooten. Animating human athletes.
In Robotics Research: The Eighth International Symposium,
pages 356–367, 1998.

[10] L. Ljung. System Identification -Theory for the User. Pren-
tice Hall, Englewood Cliffs, NJ, 1987.

[11] R. C. Nelson and R. Polana. Qualitative recognition of mo-
tion using temporal texture.Computer Vision, Graphics, and
Image Processing. Image Understanding, 56(1):78–89, July
1992.

[12] J. Popovíc, S. M. Seitz, M. Erdmann, Z. Popović, and
A. Witkin. Interactive manipulation of rigid body simula-
tions. InProc. of SIGGRAPH ’00, pages 209–218, July 2000.

[13] A. Scḧodl, R. Szeliski, D. H. Salesin, and I. Essa. Video tex-
tures. InProc. SIGGRAPH ’00, pages 489–498, July 2000.

[14] J. Stam and E. Fiume. Depicting fire and other gaseous phe-
nomena using diffusion processes. InProc. SIGGRAPH ’95,
pages 129–136, August 1995.

[15] M. Szummer and R. W. Picard. Temporal texture modeling.
In Proc. Int. Conf. on Image Processing, volume 3, pages
823–826, 1996.

[16] P. Van Overschee and B. De Moor. Subspace algorithms for
the stochastic identification problem.Automatica, 29:649–
660, 1993.

[17] Y. Z. Wang and S. C. Zhu. A generative method for textured
motion analysis and synthesis. InProc. European Conf. on
Computer Vision, volume 1, pages 583–597, June 2002.

[18] L. Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. InProc. SIGGRAPH ’00,
2000.

