# Adaptive Regularization with the Structure Tensor

V. Estellers, S. Soato, X. Bresson

Abstract-Natural images exhibit geometric structures that are informative of the properties of the underlying scene. Modern image processing algorithms respect such characteristics by employing regularizers that capture the statistics of natural images. For instance, Total Variation (TV) respects the highly kurtotic distribution of the pointwise gradient by allowing for large magnitude outlayers. However, the gradient magnitude alone does not capture the directionality and scale of local structures in natural images. The structure tensor provides a more meaningful description of gradient information as it describes both the size and orientation of the image gradients in a neighborhood of each point. Based on this observation, we propose a variational model for image reconstruction that employs a regularization functional adapted to the local geometry of image by means of its structure tensor. Our method alternates two minimization steps: first, robust estimation of the structure tensor as a semi-definite program; second, reconstruction of the image with an adaptive regularizer defined from this tensor. This two-step procedure allows us to extend anisotropic diffusion [1] into the convex setting and develop robust, efficient, and easy-to-code algorithms for image denoising, deblurring, and compressed sensing. Our method extends naturally to non-local regularization, where it exploits the local self-similarity of natural images to improve nonlocal TV [2] and diffusion operators [3]. Our experiments show a consistent accuracy improvement over classic regularization.

## I. INTRODUCTION

We consider the problem of reconstructing an image u from a set of noisy measurements f. To solve this task, we adopt a variational formulation and describe the unknown image as the solution of an optimization problem. Our reconstruction method is thus characterized by a minimization problem and a numerical algorithm to solve it.

The minimization is defined by an objective functional with a data and a prior term:

$$\min_{u} \ \mathcal{R}(u) + \frac{\alpha}{2} \|Au - f\|_{2}^{2}, \tag{1}$$

where the minimization variable, u, is a real-valued function defined over the image domain  $\Omega$ . The data term couples u with the available measurements f and depends on the problem at hand. The  $\ell_2$ -norm  $||Au - f||_2^2$  penalizes deviation from the forward linear model Au = f caused by unmodeled phenomena commonly referred as noise. Image denoising, deblurring, and compressed-sensing reconstruction, for instance, follow this model. The prior term  $\mathcal{R}(u)$  encodes assumptions about the unknown that are necessary to overcome the illposed nature of the problem; it is formalized as a regularization functional that favors solutions exhibiting characteristics of natural images, and its study is one of the cores of this paper.

Total Variation (TV) and Dirichlet energy [4] are common regularizers in image reconstruction for both modeling and numerical reasons. Both functionals penalize the magnitude of the gradient at each point by capturing the point-wise statistics of natural images: TV models piecewise-constant images with large homogeneous regions separated by a sparse set of edges, while regularization with Dirichlet energy favors homogeneous image variations with a Tikhonov penalty on image gradients. As a result, regularization with the Dirichlet energy is not able to recover sharp edges, while TV produces piecewise-constant images with staircase artifacts. As optimization problems, both regularizers result in convex functionals that have unique solutions, do not suffer from local minima, and can be efficiently minimized numerically.

In image denoising, TV can be viewed as a regularization technique as well as a diffusion scheme driven by the geometry of the image [5]. This connection appears when we solve the variational problem (2), known as Rudin-Osher-Fatemi (ROF) model [6], with gradient descent.

$$\min_{u} \int_{\Omega} |\nabla u| + \frac{\alpha}{2} ||u - f||_{2}^{2}.$$
 (2)

Euler-Lagrange give us the optimality conditions of (2) in terms of a PDE with the following gradient descent flow:

$$\frac{\partial u}{\partial t} = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) - \alpha(u - f).$$
(3)

Minimization of TV gives the term div  $(|\nabla u|^{-1}\nabla u)$  that smooths the image's level curves with mean curvature flow and corresponds to a non-linear diffusion with coefficient  $|\nabla u|^{-1}$ . The diffusion is thus adapted to the geometry of the image in terms of the image gradient: it is inhibited close to image edges where  $|\nabla u|$  is large, and encouraged in homogeneous areas with small variations. The direction of the diffusion, however, remains constant and parallel to  $\nabla u$  over the entire domain, i.e., it is isotropic. This implicit isotropy of TV introduces an additional prior on u, isotropic variations of its level curves, that is not reflected in the statistics of natural images.

To study anisotropic diffusion, we follow Weickert [1] and consider diffusion with a general diffusion tensor T with

$$\frac{\partial u}{\partial t} = \operatorname{div}(T\nabla u), \quad T(x) \in \mathbb{S}^2_+, \tag{4}$$

where  $\mathbb{S}^2_+$  is the cone of  $2 \times 2$  symmetric positive semidefinite matrices. To encourage diffusion along the edges of the image but not across them, Weickert [1] defines T(x) as a function of the structure tensor of the image at each point.

The structure tensor J = J(x) summarizes the orientation of the image gradient in a neighborhood of a point. To study orientations instead of directions, this tensor first identifies gradients that differ only by their sign with the outer product

$$J_0(x) = \nabla u(x) \otimes \nabla u(x).$$
(5)

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org

 $J_0$  encodes directional information of u at the single point and ignores neighborhood information. To describe directions at a larger scale, J is defined as a local average of  $J_0$  by convolution with a Gaussian kernel  $k_\rho$ , that is,  $J_\rho = k_\rho * J_0$ . As a result,  $J_\rho(x)$  is positive definite [7]<sup>1</sup> and captures geometric neighborhood characteristics more informative than the pointwise magnitude  $|\nabla u(x)|$  of TV regularization.

The importance of the structure tensor stems from its eigendecomposition, which summarizes the distribution of image gradients in the neighborhood of each point. Let  $q_1, q_2$  be the orthonormal eigenvectors of  $J_{\rho}(x)$  and  $\lambda_1 \geq \lambda_2 \geq 0$  its eigenvalues, then  $q_1$  gives the direction that is maximally aligned with the image gradient in the neighborhood of x,  $q_2$  the direction of maximum coherence, and  $\lambda_1, \lambda_2$  measure the contrast in these directions. Geometrically,  $\{\lambda_i q_i\}$  are the axis of an ellipse fitted to the distribution of image gradients in the neighborhood of a point. To align and scales the axes of this ellipse to the coordinate axes of the image domain we introduce the local change of coordinates  $s(x) = \Lambda^{-1/2}Q^T x$ , with  $Q = [\boldsymbol{q}_1 \boldsymbol{q}_1], \ \Lambda = \text{diag}(\lambda_1, \lambda_2)$ . With this transform,  $u \circ s$  behaves isotropically around x and is suited to isotropic regularizers like TV; in other words, the quadratic form associated with its structure tensor is a circle. This suggests a method to design regularizers adapted to the geometry of each image by means of its structure tensor.

# A. Related Work

Anisotropic diffusion first became popular in the 90s with the work of Perona and Malik [8] in image denoising [9], but it has recently been replaced by convex regularizers amenable to faster minimizations than PDE-evolution techniques.

The use of the structure tensor to denoise images was introduced by Weickert [10], and several extensions have recently followed [11]-[14]. Grasmair and Lenzen [15] proposed an anisotropic regularizer based on the structure tensor of the image. Their technique extends only TV for image denoising and relies on a slow minimization algorithm based on gradient descent. With a similar flavor, Roussos and Maragos [16] generalized the Beltrami flow [17] based on the eigendecomposition of the structure tensor. Their focus is on diffusion not regularization, and their denoising technique cannot handle non-differentiable functionals and suffers from slow numerical algorithms. To overcome these limitations, the authors simplified their regularizer in [18] and proposed efficient algorithms for image denoising and deblurring; their new regularizer, however, only depends on the eigenvalues of the struture tensor and does not makes use of the directional information available in the eigenvectors. In contrast, our technique is able to exploit both eigenvector and eigenvalue information by splitting the reconstruction in two: we first estimate the structure tensor of the image and define an adaptive regularizer for it, and we then reconstruct the image with this regularizer. In our technique, these two steps are iterated to improve accuracy.

Previous diffusion or regularization techniques based on the structure tensor [1], [15], [16], [18] are all implicitly designed for applications where the tensor can be reliably estimated by Gaussian smoothing; our technique, on the other hand, investigates reconstructions with fewer measurements where the structure tensor requires robust estimation techniques. For this reason, we formulate the estimation of the structure tensor as a regularization problem in the positive semi-definite cone, generalizing the Gaussian smoothing of [1], [15], [16], [18]. None of the existing models, moreover, has been extended into the non-local setting [2], [3] to improve reconstruction of textured images, as we propose in Section III.

More distantly related to our work are regularization functionals that eliminate the staircase effect of TV by locally varying the regularization weight [19]–[21] or by penalizing second-order differential operators, like the Total Generalized Variation of [22]. Compared to the former, our regularizer also defines a varying regularization weight, but this is done implicitly by defining the diffusion tensor as a function of the eigenvalues of the structure tensor of the image. Comparison to Total Generalized Variation requires comparison of the image priors, as our model promotes piecewise-constant reconstructions while Total Generalized Variation assumes piecewiselinear images. Such a comparison is an open question that depends on each particular image and application.

#### B. Contributions

Our contributions are thus fourfold. First, design of an adaptive regularizer that penalizes image variations taking into account the local structure of the image. The proposed regularizer generalizes anisotropic TV [15], [23] and Dirichlet energy penalties [1] into a single functional. Compared to anisotropic diffusion [1], [15], [16], the proposed approach allows for faster numerical algorithms based on convex optimization, instead of relying on explicit evolution of PDEs. This allows us to recover non-smooth solutions and solve problems not handled by diffusion techniques, like image reconstruction in compressed sensing. Second, we propose a robust estimate of the structure tensor by regularization of  $J_0$ , instead of the local averaging of [1], [15], [16], [18] that ignores image content. To this purpose, the estimation of the structure tensor is reformulated as a semi-definite program (SDP). Third, we extend our technique to non-local regularization and improve nonlocal TV and diffusion operators [2], [3]. Finally, we develop efficient algorithms for the estimation of the structure tensor and for the reconstruction of images in denoising, deblurring, and compressed-sensing applications.

The rest of the paper is organized as follows: Section II describes the reconstruction of images and their structure tensors, and Section III extends our technique to non-local regularization. The numerical minimization algorithms for these models are described in Section IV and the experimental results in Section V. Finally, conclusions drawn in Section VI.

## II. ADAPTIVE IMAGE RECONSTRUCTION

<sup>1</sup>The theoretical result of [7] shows that  $J_{\rho}$  is positive definite when the image contains some signal and the domain of the image and support of  $k_{\rho}$  are infinite. In practice, images to be restored contain a signal to be recovered and Gaussian kernels of moderate size lead to positive definite structure tensors.

The main hypothesis underlying our regularization model is that an estimate of the structure tensor of an image can significantly improve its reconstruction. This observation raises two main questions: (i) how to estimate the structure tensor from noisy measurements; (ii) how to incorporate the information of the structure tensor into the reconstruction model (1). The answer that we propose is a two-step iterative method.

In the first step of each iteration, we estimate the structure tensor and adapt the regularizer  $\mathcal{R}$  to the particular geometry of the image at each point; the result is the regularizer  $\mathcal{R}_J$ . In the second step, we use this regularizer in the reconstruction model (1) to obtain an estimate of the image. The process is iterated and we obtain the following two-step iterative method:

$$J_{k} = \underset{J(x) \succeq \epsilon}{\operatorname{arg\,min}} \quad \mathcal{G}\left(J\right) + \frac{\beta}{2} \|J - \hat{J}\|_{F,2}^{2} \quad \hat{J} = \nabla u_{k-1} \otimes \nabla u_{k-1}$$
$$u_{k} = \underset{u}{\operatorname{arg\,min}} \quad \mathcal{R}_{J_{k}}(u) + \frac{\alpha}{2} \|Au - f\|_{2}^{2}, \tag{6}$$

where  $\alpha, \beta, \epsilon$  are model parameters,  $\mathcal{G}(J)$  a regularizer on the structure tensor, and  $\|J - \hat{J}\|_{F,2}^2 = \int_{\Omega} \|J(x) - \hat{J}(x)\|_F^2$ measures the distance between the structure tensor and a coarse estimate  $\hat{J}$  with the Frobenius norm  $\|\cdot\|_F$ .

In image denoising and deblurring, we initialize our algorithm with the measurements  $u_0 = f$ , while in CS reconstruction we obtain a first coarse estimate with TV regularization that is prone to staircase artifacts. By regularizing  $\nabla u_0 \otimes \nabla u_0$ with a Huber penalty, which acts as a Laplacian regularizer in smooth regions with small gradients, we obtain a piecewise smooth structure tensor that prevents image staircases in the restoration step. The second step adapts the Huber regularizater with this structure tensor to the image contents, adapting smoothly the orientation and scale of the regularizer as a result of the smoothness of  $J_0$ . This introduces diffusion along the direction of maximum variation through repeated iterations, avoiding the staircase effect of TV and acting as Dirichlet energy regularizer in smoothly varying regions.

Combining the two stages into one leads to a reconstruction model difficult to analyze in theory and minimize in practice. The main difficulty lies in the dependence of  $\mathcal{R}_J$  on u through convolution of image derivatives and pixel-wise matrix inversion, which results in a non-convex regularizer. As a result, the minimization of the single-step method is not convex and suffers from local minima and slow-convergence algorithms. As an alternative, we estimate the structure tensor from a coarse image estimate and refine it through regularization. We then define the adaptive regularizer and reconstruct a better image estimate. The novelty of our approach lies in decomposing the problem into a sequence of convex minimizations each of which we solve efficiently by adapting standard primal-dual algorithms to the characteristics of the problem. This divide and conquer strategy currently lacks a proof of convergence, but promising experimental results motivate future analysis.

#### A. Adaptive Anisotropic Regularization

TV and Dirichlet regularizers quantify the variations of u with a scalar function of the magnitude of  $\nabla u$ . We summarize

both functionals with the Huber penalty  $g_{\gamma}^2$  [24]:

$$\mathcal{R}(u) = \int_{\Omega} g_{\gamma}(\nabla u), \quad g_{\gamma}(\nabla u) = \begin{cases} \frac{|\nabla u|^2}{2\gamma} & \text{if } |\nabla u| < \gamma \\ |\nabla u| - \frac{\gamma}{2} & \text{if } |\nabla u| \ge \gamma \end{cases}.$$
(7)

The regularizer  $\mathcal{R}$  is convex in u and behaves like the Dirichlet energy in homogeneous regions, where  $|\nabla u| < \gamma$ , while it leads to TV regularization close to the image edges, where  $|\nabla u| \ge \gamma$ . As a result, we can obtain Dirichlet regularization by setting  $\gamma > |||\nabla u|||_{\infty}$ , and TV with  $\gamma = 0$ . In-between, a small  $\gamma$  recovers sharp edges because it does not over-penalize high variations of u, while it avoids the staircase effect of TV because it removes its singularity at  $\nabla u = 0$ .

To find the link with diffusion PDEs, we use Euler-Lagrange to derive the descent flow that minimizes  $\mathcal{R}(u)$ ; that is,

$$\frac{\partial u}{\partial t} = \operatorname{div}\left(\frac{1}{\max(\gamma, |\nabla u|)} \nabla u\right). \tag{8}$$

The diffusion is still parallel to  $\nabla u$  and isotropic, as we need to introduce a diffusion tensor in  $\mathcal{R}$  for anisotropic diffusion. Given a diffusion tensor  $\tilde{T} \in \mathbb{S}^2_+$ , we consider the regularizer

$$\mathcal{R}_T(u) = \int_{\Omega} g_{\gamma}(S\nabla u), \quad S(x) = \sqrt{\tilde{T}(x)}, \quad (9)$$

where S(x) is the principal square root of matrix  $\tilde{T}(x)$ , i.e, the unique positive semidefinite matrix with  $\tilde{T}(x) = S(x)^{\top}S(x)$ . Its descent flow leads to an anisotropic diffusion parallel to  $\tilde{T}$ :

$$\frac{\partial u}{\partial t} = \operatorname{div}\left(T(x)\nabla u\right), \quad T(x) = \frac{1}{\max(\gamma, |S\nabla u|)}\tilde{T}(x),$$
(10)

Equations (9) and (10) describe the relation between the diffusion tensor T of PDE methods and the proposed regularization framework. With this in mind, we design a regularizer  $\mathcal{R}_J = \mathcal{R}_{T(J)}$  adapted to each image by the defining T as a function of its structure tensor J. In particular, we eigendecompose J inspired by the anisotropic diffusion [1].

Let J(x) be the estimated structure tensor of the image at point x, with eigenvectors  $Q(x) = [\mathbf{q}_1(x) \ \mathbf{q}_2(x)]$  and diagonal matrix of eigenvalues  $\Lambda(x)$ ; we define the diffusion tensor  $T(x) = Q(x)\Gamma(x)Q^{T}(x)$  with the same orientation as J(x) and positive eigenvalues  $\Gamma(x) = \Gamma(\Lambda(x))$ . To justify our choice of  $\Gamma$ , we make use of the geometric interpretation of  $\{\lambda_i(x)q_i(x)\}\$  as the axes of the ellipse that describes the orientation and size of the image gradient locally. To use an isotropic regularizer, it is necessary to rotate and scale the axes of the ellipse to coincide with the coordinate axes of the image domain; this requires eigenvalues  $\Gamma(x) = \Lambda^{-1}(x)$  and corresponds to the change of coordinates  $S(x) = \Lambda^{-\frac{1}{2}}(x)Q^{T}(x)$ that, locally applied to the image, leads to a structure tensor with the unit circle as quadratic form. To avoid instabilities in essentially flat regions, where  $\lambda_i < \epsilon$ , we introduce a lower bound in the eigenvalues of the diffusion tensor similar to Weickert's diffusion; this acts as  $\gamma_i = min(\lambda_i^{-1}, \epsilon^{-1})$  and is directly implemented in the estimation of the structure tensor with the constraint  $J \succeq \epsilon$  of Equation (6).

<sup>&</sup>lt;sup>2</sup>In an abuse of notation, we use the same expression for the Huber norm  $g_{\mu}(z)$  throughout the paper, even though the dot product operator in  $|z|^2 = \sqrt{z \cdot z}$  is defined by the Hilbert space associated with variable z.

Finally, we need to compute the tensor  $\tilde{T}$  used in the regularizer (9). Tensor  $\tilde{T} = \max(\gamma, |S\nabla u|)T$  is a scaled version of the diffusion tensor T with a spatially variable factor that depends on the image, which is not known. To overcome this issue we mimic explicit PDE evolution techniques used in anisotropic diffusion and approximate  $|S\nabla u|$  with the current estimate of J (instead of the current u estimate of explicit PDE evolution). Our approximation uses the following relation:

$$|S\nabla u| = \sqrt{(\nabla u)^T T \nabla u} = \sqrt{\lambda_1^{-1} (\boldsymbol{q_1} \cdot \nabla u)^2 + \lambda_2^{-1} (\boldsymbol{q_2} \cdot \nabla u)^2},$$

where  $(q_i \cdot \nabla u)^2 \propto |\lambda_i|^2$  for the structure tensor of u. Our approximation thus gives  $|S\nabla u| \propto \sqrt{\lambda_1 + \lambda_2}$ , and we can set  $T = \max(\gamma, \sqrt{\lambda_1 + \lambda_2})T$  and let the model parameter  $\alpha$ absorb the remaining constant scaling.

In brief, given an estimate of the structure tensor, we compute its eigen-decomposition  $J = Q\Lambda Q^T$  at each point and define our adaptive regularizer

$$\mathcal{R}_J(u) = \int_{\Omega} g_{\gamma}(S\nabla u), \quad S = \max(\sqrt{\gamma}, \sqrt[4]{\lambda_1 + \lambda_2}) \ \Lambda^{-\frac{1}{2}} Q^T.$$

In terms of diffusion, this gives us the tensor

$$T = \frac{\max(\gamma, \sqrt{\lambda_1 + \lambda_2})}{\max(\gamma, \max(\sqrt{\gamma}, \sqrt[4]{\lambda_1 + \lambda_2})\sqrt{\nabla u^\top J^{-1} \nabla u}))} J^{-1},$$

where  $J^{-1} = \lambda_1^{-1} \boldsymbol{q}_1 \otimes \boldsymbol{q}_1 + \lambda_2^{-1} \boldsymbol{q}_2 \otimes \boldsymbol{q}_2$ . In flat regions with  $\lambda_1 \approx |\nabla u|^2 < \epsilon < \gamma$ , our estimation of the structure tensor ensures that  $\lambda_i < \epsilon^{-1}$ ,  $\epsilon^{-1} |\nabla u|^2 < 1$  and diffusion with  $T = \epsilon^{-1}(\boldsymbol{q}_1 \otimes \boldsymbol{q}_1 + \boldsymbol{q}_2 \otimes \boldsymbol{q}_2)$  is isotropic. In non-flat regions with  $|\nabla u|^2 > \epsilon$ , we can simplify the

diffusion tensor taking into account that J approximates the structure tensor and  $\mathbf{q}_1 \approx \frac{\nabla u}{|\nabla u|}$ ,  $\mathbf{q}_2 \cdot \nabla u \approx 0$ , and  $\lambda_1 \approx |\nabla u|^2$ . As a result  $\nabla u^{\top} J^{-1} \nabla u \approx 1$  and

$$T \approx \frac{\max(\gamma, \sqrt{\lambda_1 + \lambda_2})}{\max(\gamma, \max(\sqrt{\gamma}, \sqrt[4]{\lambda_1 + \lambda_2}))} J^{-1}.$$

Let  $c = \frac{\gamma}{\max(\gamma, \sqrt{\gamma})}$ , in smooth regions with  $\gamma > \sqrt{\lambda_1 + \lambda_2}$ 

$$T \approx \frac{\gamma}{\max(\gamma, \sqrt{\gamma})} J^{-1} = c\lambda_1^{-1} \boldsymbol{q}_1 \otimes \boldsymbol{q}_1 + c\lambda_2^{-1} \boldsymbol{q}_2 \otimes \boldsymbol{q}_2,$$

and the diffusion has a smaller diffusivity  $c\lambda_1^{-1}$  along the direction of maximum variation  $q_1$  and a larger diffusivity  $c\lambda_2^{-1}$  along the direction of maximum coherence  $q_2$ . If the region is isotropic,  $\lambda_1 \approx \lambda_2$  and we obtain isotropic diffusion.

Close to edges,  $\gamma < \sqrt{\lambda_1 + \lambda_2}$  with  $\lambda_2 \ll \lambda_1$  and

$$T \approx \frac{\sqrt{\lambda_1}}{\lambda_1 \max(\gamma, \sqrt[4]{\lambda_1}))} \boldsymbol{q}_1 \otimes \boldsymbol{q}_1 + \frac{\sqrt{\lambda_1}}{\lambda_2 \max(\gamma, \sqrt[4]{\lambda_1}))} \boldsymbol{q}_2 \otimes \boldsymbol{q}_2,$$

diffusion accross the edge (direction  $q_1$ ) is minimal and inversely proportional to the edge strength as  $\sqrt{\lambda_1} \approx |\nabla u|$ , while diffusion along the edge  $(q_2)$  is large. As a result, our regularizer recovers sharp edges and emphasizes coherent directional structures.

#### B. Robust Estimation of the Structure Tensor

Each iteration the structure tensor is estimated in two steps. First, we obtain a noisy point-wise estimate J from the image estimate  $u_{k-1}$ , and we then regularize it to obtain  $J_k$ .

The first estimate of the structure tensor is computed directly as the outer product of image gradients as in Equation (5), i.e.,

$$\hat{J} = \nabla u_{k-1} \otimes \nabla u_{k-1}. \tag{11}$$

The definition of  $\hat{J}$  in terms of derivatives makes it very sensitive to noise and artifacts in  $u_{k-1}$  and calls for regularization. Compared to the Gaussian smoothing of [1], [15], [16], [18], our regularization technique is adapted to the structure of each J.

As in any regularization model, we have a smoothness and a data term: the smoothness term is a generalization of TV and Dirichlet penalties, while the data term penalizes deviations from J in the positive semi-definite cone.

Let  $\nabla J$  be the Jacobian matrix of component-wise gradients and  $|\cdot|_F$  the Frobenius norm, our smoothness term

$$\mathcal{G}(J) = \int_{D} g_{\mu}(\nabla J), \quad g_{\mu}(\boldsymbol{z}) = \begin{cases} \frac{|\boldsymbol{z}|_{F}^{2}}{2\mu} & \text{if } |\boldsymbol{z}|_{F} < \mu \\ |\boldsymbol{z}|_{F} - \frac{\mu}{2} & \text{if } |\boldsymbol{z}|_{F} \ge \mu \end{cases}$$
(12)

uses the Huber norm  $g_{\mu}$  to allow sharp discontinuities at the boundaries of textured regions and small variations in within. In fact, setting  $\mu = 0$  leads to vectorial TV [25], while  $\mu >$  $\||\nabla \hat{J}|_F\|_{\infty}$  provides a Dirichlet regularization equivalent to Gaussian smoothing [1], [15], [16], [18]. The proposed  $\mathcal{G}$  is also convex in J, which simplifies the minimization.

We propose two models to regularize  $\hat{J}$  in the space of symmetric 2×2 matrices with eigenvalues larger than  $\epsilon$ ,  $\mathbb{S}^2_{\epsilon+}$ . The first model introduces the constraint  $J(x) \succeq \epsilon$  in the minimization and solves it by pixel-wise projection into  $\mathbb{S}^2_{\epsilon+}$ :

$$J_{k} = \underset{J}{\arg\min} \ \mathcal{G}(J) + \frac{\beta}{2} \|J - \hat{J}\|_{F,2}^{2} \text{ s.t. } J(x) \in \mathbb{S}_{\epsilon+}^{2}.$$
(13)

The second model takes into account that also  $\hat{J}(x) \in \mathbb{S}^2_+$ , and adapts the  $\ell_2$  penalty in (13) to the metric of  $\mathbb{S}^2_+$ . To this purpose, we use the Lie-group structure of  $\mathbb{S}^2_{++}$  to define a data term that measures the geodesic distance in  $\mathbb{S}^2_{++}$ . This kind of regularization was originally proposed for diffusion tensors in MRI [26], [27], but the resulting models are computationally too expensive for large images. To overcome this issue, [28] develops log-Euclidean metrics that approximates the metric of  $\mathbb{S}^2_{++}$  in the matrix-logarithm domain. Log-Euclidean metrics are based on the observation that the logarithm transforms elements of  $\mathbb{S}^2_{++}$  into symmetric matrices in  $\mathbb{S}^2$ , matrix exponentiation maps them back to  $\mathbb{S}^2_{++}$ in a one-to-one mapping, and relative distance relations geodesic in  $\mathbb{S}^2_{++}$  and Euclidean in  $\mathbb{S}^2$ - are preserved by this transform. Consequently, regularization can be carried out in the logarithm domain with Euclidean metrics, as follows:

$$\log J_k = \underset{\log J \log \epsilon}{\operatorname{arg\,min}} \ \mathcal{G}\left(\log J\right) + \frac{\beta}{2} \|\log J - \log \hat{J}\|_{F,2}^2.$$
(14)

Defining the minimization variable to be  $\log J$ , we solve (14) as a standard vectorial regularization and recover the structure tensor by pixel-wise matrix exponentiation, with the constraint  $J \succeq \epsilon$  incorporated in  $J_k(x) = \exp(\max(\log \epsilon, \log J_k(x)))$ . For details on log-Euclidean metrics and other approaches to fast SDP regularization, we refer the reader to [28], [29].

#### C. Enhanced Image Reconstruction

Given an estimate of the structure tensor,  $J_k$ , we reconstruct an image by solving the following minimization problem:

$$u_k = \underset{u}{\operatorname{arg\,min}} \ \mathcal{R}_{J_k}(u) + \frac{\alpha}{2} \|Au - f\|_2^2.$$
 (15)

In image denoising, A is the identity operator, in deblurring A is the blurring kernel, and in compressive sensing A is the sampling matrix.

In the case of image denoising, several methods emerge as special cases of the proposed model: standard diffusion corresponds to  $\beta = 0$ ,  $\gamma > |||\nabla u^0|||_{\infty}$ , TV corresponds to  $\beta = 0$ ,  $\gamma = 0$ , and the anisotropic diffusion of Weickert [10] is obtained with  $\beta > 0, \mu > |||\nabla \hat{J}||_{\infty}, \gamma = 0$ .

#### **III. EXTENSION TO NON-LOCAL OPERATORS**

Non-local (NL) regularization has been recently introduced in image processing to exploit the local self-similarity of natural images to improve image reconstruction [2], [30]–[32]. To this purpose, NL techniques take into account multiple instances of the same image structure and define the concept of non-local derivatives. Research, however, is still limited to NL equivalents of isotropic TV [2] and Dirichlet regularizers [30], and non-local equivalents to the structure tensor have not been investigated yet. This is the goal of this section.

In the study of this question, we consider the recovery model

$$\min_{u} R_G(u) + \frac{\alpha}{2} \|Au - f\|_2^2,$$
(16)

where  $R_G(u)$  is a NL regularizer, like the NL-TV [2] or the NL-diffusion [30]. Analogously to the local case, we adapt  $R_G$  to each image by means of its NL structure tensor.

# A. Non-Local Regularization

Non-local TV and Dirichlet regularizers are variational extensions of the NL-means filter [33] for image denoising. They come in both discrete and continuous flavors: in the continuous setting, Gilboa and Osher [2] use graph theory to extended TV to a non-local functional, while Zhou and Schölkopf [3] and Elmoataz et al. [34] use graph Laplacians to define discrete NL operators. These operators have been used in denoising [2], segmentation [35], [36], inpainting [31], deconvolution, and compressive sensing [37], [38], but research is still open to new models, not only to new applications.

Our NL method discretizes the continuous formulation of [2] and considers the image as a graph  $G = (\Omega, E)$ , where  $\Omega$  is the set of nodes, one for each pixel in the image, and E is the set of edges connecting the nodes. The edge connecting nodes i and j is weighted by w(i, j), which measures the distance between the two nodes in the metric of the graph. Consequently, two pixels spatially far away in the image domain can be neighbors in the graph and interact if w(i, j) > 0, which we write  $i \sim j$ .

Given an image u, the non-local gradient  $\nabla_G u$  at node i is defined as the vector of all directional derivatives associated with the neighbors of i, that is

$$\nabla_G u(i,j) = (u(j) - u(i))\sqrt{w(i,j)} \quad \forall \ j \sim i.$$
(17)

 $\nabla_G u$  is thus a vector field in  $\Omega \times \Omega$  with components indexed by the neighbors of each node. We are interested in sparse graphs where each node is connected to a small number of neighbors, and we can summarize the gradient  $\nabla_G u$  at node *i* as a vector with  $\nu_i$  effective components – the rest being null.

We can naturally define a dot product of vector fields by simple analogy to the local case,

$$(\boldsymbol{d} \cdot \boldsymbol{e})_G(i) = \sum_{j \sim i} d(i, j) e(i, j), \tag{18}$$

Similarly, the inner product of functions and vector fields is

$$\langle u, v \rangle_G = \sum_{i \in \Omega} u(i)v(i) \qquad \langle \boldsymbol{d}, \boldsymbol{e} \rangle_G = \sum_i (\boldsymbol{d} \cdot \boldsymbol{e})_G(i).$$

With the previous definitions, the magnitude of a vector field at node i is given by

$$|\boldsymbol{d}|_G(i) = \sqrt{(\boldsymbol{d} \cdot \boldsymbol{d})_G(i)},\tag{19}$$

Consequently, the NL-TV and Dirichlet functionals of [2], [39] can be written in terms of the Huber penalty, as follows:

$$\mathcal{R}_{G}\left(u
ight) = \int_{\Omega} g_{\delta}(
abla_{G}u), \ \ g_{\delta}(oldsymbol{z}) = \left\{egin{array}{c} |oldsymbol{z}|_{G}^{2\delta} & ext{if} \ |oldsymbol{z}|_{G} < \delta \ |oldsymbol{z}|_{G} - rac{\delta}{2} & ext{if} \ \ |oldsymbol{z}|_{G} \geq \delta \end{array}
ight.$$

With these definitions, if we consider only the immediate pixels as neighbors with unit weights,  $\mathcal{R}_G$  reduces to the finitedifference discretizations of  $\mathcal{R}$ . By considering more general neighborhoods,  $\nabla_G$  incorporates global information and the regularization is improved. For this reason, we follow [33] and define the weighting function by measuring the difference between  $5 \times 5$  patches around each node, that is,

$$w(i,j) = \exp^{-\frac{\|\mathcal{P}_0(i) - \mathcal{P}_0(j)\|_2^2}{2h^2}},$$
(20)

where h is a scaling factor, and  $\mathcal{P}_0(i)$  is an image patch of  $u_0$  centered at pixel i. This weighting function is designed to reduce Gaussian noise while preserving image textures.

With these weights,  $\nabla_G$  is already adapted to the structure of the image and reconstruction with  $\mathcal{R}_G$  exploits similarities between patches. Our NL regularizer goes a step further and exploits the similarity of the image within the patch neighbors.

#### B. Non-Local Adaptive Image Reconstruction

Mimicking Section II, we can derive a two-step NL reconstruction method. To compute the graph weights, the method is initialized with the reconstruction model (1).

In the first step of each iteration, we estimate the NL structure tensor of the image,  $J_G$ , and define an adaptive regularizer  $\mathcal{R}_{J_G}$ . In the second step, we reconstruct an image with the proposed regularizer  $\mathcal{R}_{J_G}$  by solving a convex minimization problem. Iterating the process, we obtain our NL method:

$$\begin{cases} J_{G_k} \leftarrow \text{estimate NL structure tensor from } u_{k-1} \\ u_k = \operatorname*{arg\,min}_u \mathcal{R}_{J_G}(u) + \frac{\alpha}{2} \|Au - f\|_2^2 \end{cases}$$

We initialize  $u_0$  to the solution of its local model for the weight computation (20). The next sections detail each of these steps.

#### C. Non-Local Adaptive Regularization

By analogy with the local case, we consider a NL anisotropic regularizer defined by a diffusion tensor  $\tilde{T}_G$ :

$$\mathcal{R}_{J_G}(u) = \sum_{i \in \Omega} g_{\delta}(S_G \nabla_G u), \quad S_G(i) = \sqrt{\tilde{T}_G(i)}, \quad (21)$$

where  $\tilde{T}_G(i)$  can be effectively reduced to a tensor in  $\mathbb{S}^{\nu_i}_+$  by only considering the components of  $\nabla_G u$  associated to the neighbors of node *i*, that is,  $\nabla_G u(i) = \nabla_G u(i, \cdot) \in \mathbb{R}^{\nu_i}$ . In what follows, we consider this compact notation.

The diffusion PDE of (21) comes from its formulation in the continuous framework [2], where it is easy to show that its descent flow leads to the anisotropic diffusion

$$\frac{\partial u}{\partial t} = \operatorname{div}_G \left( T_G \nabla_G u \right), \quad T_G = \frac{1}{\max(\delta, |S_G \nabla_G u|)} \tilde{T}_G.$$

The diffusion tensor  $T_G$  can again be defined as a function of the NL structure tensor of the image.

Let  $J_G(i) \in \mathbb{S}_{\epsilon+}^{\nu_i}$  be the estimated structure tensor of the image at node i, and  $J_G(i) = Q_G(i)\Lambda_G(i)Q_G^T(i)$  its eigendecomposition. As in the local case, we define the diffusion tensor with the same orientation as  $J_G(i)$  and positive eigenvalues  $\Lambda_G^{-1}(i)$ . This tensor can then be decomposed as  $T_G(i) = S_G^T(i)S_G(i)$ , with  $S_G(i) = \Lambda_G^{-\frac{1}{2}}(i)Q_G^T(i)$  a change of coordinates that redresses the ellipsoid defined by the NL structure tensor into a sphere.

Finally, we define  $\tilde{T}_G(i) = \max(\delta, |S_G \nabla_G u|(i))T_G(i)$ in the same manner than Section II, and our adaptive NL regularizer as follows:

$$\mathcal{R}_{J_{G}}(u) = \sum_{i \in \Omega} g_{\delta}(S_{G} \nabla_{G} u), \ S_{G} = \max(\sqrt{\delta}, \sqrt[4]{\lambda_{1} + \lambda_{2}}) \ \Lambda_{G}^{-\frac{1}{2}} Q_{G}^{T}$$

#### D. Robust Estimation of the Non-Local Structure Tensor

Each iteration the NL structure tensor is estimated in two steps. We first obtain a noisy point-wise estimate  $\hat{J}_G$  from the image  $u_{k-1}$ , and we then regularize it to obtain  $J_{G_k}$ .

As in the local setting,  $\hat{J}$  is defined by the outer product of image gradients, as follows:

$$\hat{J}_G(i) = \nabla_G u(i, \cdot) \otimes \nabla_G u(i, \cdot)$$
 where  $\hat{J}_G(i) \in \mathbb{S}_{\epsilon+}^{\nu_i}$ . (22)

 $\hat{J}_G$  is computed directly in terms of NL derivatives and is very sensitive to noise. To overcome this issue, we regularize it with a technique adapted to the NL structure tensor. As in any regularization model, we have a data and a smoothness term, but the smoothness term requires careful consideration.

The difficulty comes from the lack of global correspondence between components of  $\hat{J}_G$  and spatial directions in  $\Omega$  that is inherited from the NL gradient. Indeed, the direction of  $\nabla_G u(i, j)$  depends on the relative position of nodes *i* and *j* in the image domain and is not coherent for all the pixels. Consequently, we cannot compare the value of the NL structure tensor in terms of its components, and regularization based on component-wise differential operators is meaningless. There is no reason, however, not to combine a data term on  $\hat{J}_G$  with a smoothness term on a scalar function of  $J_G$ . We consider log-Euclidean metrics in the positive semidefinite cone for both the data and the smoothness terms. This results in the following minimization in variable  $L_G = \log J_G$ 

$$\min_{\substack{L_G \\ v = \text{tr}[\hat{L}_G L_G]}} \sum_{i \in \Omega} g_{\nu}(\nabla_G v) + \frac{\beta}{2} \| L_G(i) - \hat{L}_G(i) \|_F^2, \quad (23)$$

where tr[·] is the trace operator,  $\hat{L}_G = \log(\hat{J}_G)$ , and v is an affine approximation of the Frobenius norm of  $L_G$ , that is,

$$||L_G(i)||_F^2 = \operatorname{tr}[L_G(i)L_G(i)] \approx \operatorname{tr}[\hat{L}_G(i)L_G(i)].$$
(24)

This approximation is introduced to make the minimization convex and the numerical algorithms fast. After minimization, the structure tensor is recovered by matrix exponentiation.

#### E. Enhanced Non-Local Image Reconstruction

Given the proposed regularizer  $\mathcal{R}_{J_{G_k}}$  we reconstruct the image by solving the following minimization problem:

$$u_k = \underset{u}{\arg\min} \ \mathcal{R}_{J_{G_k}}(u) + \frac{\alpha}{2} \|Au - f\|_2^2.$$
(25)

#### IV. NUMERICAL MINIMIZATION

To efficiently solve the minimization problems (13) and (15), we re-formulate them as constraint minimizations with independent variables for each term, form the associated Lagrangians, and solve the resulting saddle-point problems with a primal-dual algorithm. To simplify notation, we remove the k subindexes in  $u_k$  and  $J_k$  that indicate the iterations.

The minimizations (13) and (15) involve a quadratic term and a regularizer similar to the ROF model [6]. Consequently, our algorithms apply a strategy to overcome the dependency on derivatives and the non-linearity in  $\mathcal{R}_J$  similar to the multitude of algorithms for this model. The first algorithms for the ROF model [6] solved the minimization by explicit evolution of its descent-flow PDE, this lead to slow algorithms with time steps limited by Courant-Friedrichs-Lewy stability conditions [40]. To overcome this limitation, techniques based on variable splitting and constrained optimization have been recently introduced, and directly adopted for the minimization of NL-TV functionals [38], [41].

A popular class of methods is based on the dual formulations of ROF, like Chambolle's projection method [42], or the primal-dual approaches [43]–[45]. Other options are based on variable-splitting and constrained optimization [46]; which is solved by quadratic-penalties [47], Bregman iterations [48], [49], or augmented Lagrangians [50]. The relations between these different methods are explained in [51]. Among them, we choose the primal-dual approach of [45] because it leads to minimization problems with closed-form solutions computationally cheaper to compute than the splitting methods [47], [48], [50] and it can be easily accelerated by adapting its time steps  $\sigma$ ,  $\tau$  to guarantee an optimal rate of convergence.

#### A. Discretization and Notation

In the numerical minimization, we discretize  $\Omega$  with a regular grid of size  $n = n_x \times n_y$  and describe functions in  $\Omega$  by the values taken at each sample point (pixel), that is,

 $u \in \mathbb{R}^n$  describes a function in  $\Omega$  with u(i) value at pixel *i*. Vector or matrix fields with *k* components are then rasterized in the same manner into vectors in  $\mathbb{R}^{nk}$ .

We use forward differences to compute the discrete gradients and backward differences for the divergence to preserve the adjoint relationship div =  $-\nabla^*$ . With vector notation, we can efficiently compute the spatial derivatives multiplying the discrete functions with sparse finite difference matrices. As the NL gradient is also a linear operator, the same vector notation allows us to compute  $\nabla_G u$  by multiplication with a sparse matrix  $D_G u$  that is defined by the NL neighboors and their weights. We summarize both algorithms by considering the discretization of the spatial derivatives as a particular case of the NL differential operators –with unit weights and NL neighbors defined by finite-difference approximations.

Finally,  $|\cdot|$  denotes the magnitude of a vector field defined in the image domain  $\Omega$  ( $|\cdot|_G$  in the NL case), while  $||\cdot||_2$ is the  $\ell_2$  norm in its Hilbert space. The dot product of vector fields is denoted by  $v_1 \cdot v_2$ , while its inner product is  $\langle u_1, u_2 \rangle$ .

# B. Reconstruction with Adaptive Regularizer

To reconstruct the image we need to solve the problem

$$\min_{u} \ \frac{\alpha}{2} \|Au - f\|_{2}^{2} + \sum_{i=1}^{n} g_{\gamma}(S[i] \ \nabla_{G}u[i]).$$
(26)

Our algorithm exploits the convexity of each of the terms in (26) to re-formulate it as a saddle-point problem that is easy to solve in the primal and dual variables independently.

To this purpose, we let  $F(d) = \sum_{i=1}^{n} g_{\gamma}(d(i))$  and re-write (26) as the constrained minimization

$$\min_{u} \ \frac{\alpha}{2} \|Au - f\|_{2}^{2} + F(d) \quad \text{s.t.} \quad d = Ku$$
 (27)

where K is a linear operator that combines the gradient with the pixel-dependent linear transform S, i.e.,  $Ku(i) = S(i)\nabla u(i)$  for local and  $Ku(i) = S_G(i)\nabla_G u(i)$  for NL case.

The Lagrangian  $\mathcal{L}(\boldsymbol{y})$  of (27) is obtained by introducing a dual variable  $\boldsymbol{y}$  for the constraint  $\boldsymbol{d} = Ku$  and making use of the convex conjugate  $F^{\star}(\boldsymbol{y}) = \sup_{\boldsymbol{d}} \langle \boldsymbol{y}, \boldsymbol{d} \rangle - F(\boldsymbol{d})$  to obtain:

$$\mathcal{L}(\boldsymbol{y}) = \min_{\boldsymbol{u}} \ \frac{\alpha}{2} \|A\boldsymbol{u} - f\|_2^2 - F^*(\boldsymbol{y}) + \langle \boldsymbol{y}, K\boldsymbol{u} \rangle.$$

Finally, convex analysis tells us that the minimization of (27) is equivalent to the saddle-point problem

$$\min_{u} \max_{\boldsymbol{y}} \frac{\alpha}{2} \|Au - f\|_{2}^{2} - F^{*}(\boldsymbol{y}) + \langle \boldsymbol{y}, Ku \rangle.$$
(28)

We solve this problem with the primal-dual algorithm of Chambolle-Pock [45] by solving a sequence of minimization problems in u and y independently. In our case, these read:

$$\begin{aligned} \boldsymbol{y}^{t+1} &= \underset{\boldsymbol{y}}{\arg\min} \ \sigma F^{*}(\boldsymbol{y}) + \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{y}^{t} - \sigma K \boldsymbol{z}^{t} \|_{2}^{2} \\ u^{t+1} &= \underset{\boldsymbol{u}}{\arg\min} \ \tau \alpha \| A \boldsymbol{u} - \boldsymbol{f} \|_{2}^{2} + \| \boldsymbol{u} - \boldsymbol{u}^{t} + \tau K^{*} \boldsymbol{y}^{t+1} \|_{2}^{2} \\ \boldsymbol{z}^{t+1} &= \ \boldsymbol{u}^{t+1} + \theta (\boldsymbol{u}^{t+1} - \boldsymbol{u}^{n}). \end{aligned}$$

As the problem is uniformly convex, this algorithm can be further accelerated by updating parameters  $\sigma$ ,  $\tau$  (Alg. 2 [45]). Another acceleration for Lipschitz functions is given by [52]. The efficiency of the proposed algorithm comes from the ability to find closed-form solutions for each of the subminimization problems. The derivation of these solutions is detailed next and the procedure summarized in Algorithm 1.

 $\begin{array}{ll} \textbf{Initialize } u, \boldsymbol{y}, z \text{ to } 0. \\ \textbf{Choose } \tau, \sigma > 0, \ \theta \in [0, 1]. \\ \textbf{while } \| u^{t+1} - u^t \| > 1^{-4} \ \textbf{do} \\ & \left| \begin{array}{c} \boldsymbol{y}^{t+1}(i) = \frac{\boldsymbol{\hat{y}}(i)}{\max(1 + \sigma\gamma, |\boldsymbol{\hat{y}}(i)|)}, & \boldsymbol{\hat{y}} = \boldsymbol{y}^t + \sigma K z^t \\ u^{t+1} = \frac{\hat{u} + \alpha f}{1 + \tau \alpha}, & \hat{u} = u^t - \tau K^* \boldsymbol{y}^{t+1} \\ z^{t+1} = u^{t+1} + \theta(u^{t+1} - u^t) \end{array} \right.$ 

**Algorithm 1:** Efficient minimization associated to reconstruction model (26) for image denoising.

If we define  $\hat{u} = u^t - \tau K^* y^{t+1}$ , the minimization in u is discretized as the least-squares problem

$$\min_{u} \ \frac{\tau \alpha}{2} \|Au - f\|_2^2 + \frac{1}{2} \|u - \hat{u}\|_2^2.$$
(29)

Its optimality conditions lead to the following linear system, with positive definite matrix:

$$(\tau \alpha A^T A + I_n)u = b \text{ with } b = \hat{u} + \alpha A^T f.$$
 (30)

While in image denoising  $A = I_n$  and the solution  $u = \frac{\hat{u} + \alpha f}{1 + \tau \alpha}$  does not require any matrix inversion, in deblurring and compressed sensing, we need efficient ways to invert  $\tau \alpha A^T A + I_n$ .

In image deblurring, Au denotes the convolution of the image u with a Gaussian kernel k. This operation can be computed efficiently in the frequency domain by point-wise multiplication of their Fourier transforms, and the result recovered by the inverse Fourier transform  $\mathcal{F}^{-1}$ , that is:  $Au = \mathcal{F}^{-1}\hat{V}$ , with  $\hat{V}(i) = \hat{K}(i)\hat{U}(i)$  and  $\hat{K}$ ,  $\hat{U}$  the 2-dimensional discrete Fourier transforms of k and u. In compressive sensing, the measurements f are random samples in the Fourier domain, and the matrix  $A = R\mathcal{F}$  decomposes into a binary mask R and the discrete Fourier transform  $\mathcal{F}$  [53]. In both cases,  $(\tau \alpha A^T A + I_n)u$  can be written as an entry-wise multiplication in the Fourier domain equivalent to a diagonal linear system  $\hat{D}_{\star}\hat{U} = \mathcal{F}[b]$  trivial to invert, with matrix  $\hat{D}_{\star}$  given by the Fourier decomposition of  $(\tau \alpha A^T A + I_n)$ . In terms of implementation, the FFT gives a fast and exact  $\mathcal{O}(n \log n)$ algorithm to perform discrete Fourier transforms.

To solve the minimization in y, we use Moreau's identity [51] to rewrite the minimization in terms of F. This gives

$$oldsymbol{y}^\star = rgmin_{oldsymbol{y}} \ \sigma F^*(oldsymbol{y}) + rac{1}{2} \|oldsymbol{y} - \hat{oldsymbol{y}}\|_2^2 \iff oldsymbol{y}^\star = \hat{oldsymbol{y}} - \sigma oldsymbol{d}^\star$$

with  $d^* = \arg \min_d F(d) + \frac{\sigma}{2} ||d - \frac{\hat{y}}{\sigma}||_2^2$ . As the minimization in d is decoupled for each pixel, it simplifies to

$$\boldsymbol{d}^{\star}(i) = \underset{\boldsymbol{d}(i)}{\operatorname{arg\,min}} \left| g_{\gamma}(\boldsymbol{d}(i)) + \frac{\sigma}{2} \left| \boldsymbol{d}(i) - \frac{\hat{\boldsymbol{y}}(i)}{\sigma} \right|^{2}.$$
(31)

and we only have to minimize  $g_{\gamma}(v) + \frac{\sigma}{2} |v - \frac{\hat{y}(i)}{\sigma}|^2$  in  $v \in \mathbb{R}^2$ .

For  $\gamma > 0$ , the Huber penalty is differentiable and the optimality condition of (31) is obtained by imposing zero first

derivatives in v, that is,

$$\frac{\boldsymbol{d}(i)}{\max(\gamma, |\boldsymbol{d}(i)|)} + \sigma \boldsymbol{d}(i) - \hat{\boldsymbol{y}}(i) = 0$$
(32)

With some algebraic manipulation, we obtain its solution

$$\boldsymbol{d}(i) = \frac{\boldsymbol{\hat{y}}(i)}{\sigma} - \frac{1}{\sigma} \frac{\boldsymbol{\hat{y}}(i)}{\max(|\boldsymbol{\hat{y}}(i)|, 1 + \sigma\gamma)}, \quad (33)$$

and update the dual variable:

$$\boldsymbol{y}(i) = \frac{\boldsymbol{\hat{y}}(i)}{\max(|\boldsymbol{\hat{y}}(i)|, 1 + \sigma\gamma)}.$$
(34)

For  $\gamma = 0$ ,  $g_{\gamma}(v) = |v|$ , and the minimization is a wellknown non-differentiable problem solved with shrinkage by

$$\boldsymbol{d}(i) = \frac{1}{\sigma} \max\left(|\boldsymbol{\hat{y}}(i)| - 1, 0\right) \frac{\boldsymbol{\hat{y}}(i)}{|\boldsymbol{\hat{y}}(i)|} \rightarrow \boldsymbol{y}(i) = \frac{\boldsymbol{\hat{y}}(i)}{\max(1, |\boldsymbol{\hat{y}}(i)|)}$$

The only difference between the local and NL versions is in the minimization problem in d. However, as it is decoupled for each pixel, we obtain the same closed-form solutions for the local and NL case if we simply allow the size of d(i)to change with the number of NL neighbours of each node. Putting together the different updates we get Algorithm 1.

## C. Regularization of the Structure Tensor

Section II-B presents two models to regularize the estimated structure tensor  $\hat{J}$ . We detail here the algorithm for (13) as it can handle (14) by omitting the projection onto  $\mathbb{S}^2_{\epsilon+}$ .

To regularize the structure tensor with (13), we solve

$$\min_{J} \sum_{i=1}^{n} g_{\mu}(\nabla J(i)) + \frac{\beta}{2} \|J - \hat{J}\|_{F,2}^{2} \text{ s.t. } J(x) \in \mathbb{S}_{\epsilon+}^{2}, \quad (35)$$

We use the same strategy to solve this minimization: we reformulate it as a constrained optimization and solve the associated saddle-point problem with algorithm [45] finding closed-form solutions for each sub-minimization.

The equivalent constrained minimization is

$$\min_{J} \int_{\Omega} g_{\mu}(M) + \frac{\beta}{2} \|J - \hat{J}\|_{F,2}^{2} \quad \text{s.t.} \quad M = \nabla J, \ J(x) \in \mathbb{S}_{\epsilon+}^{2}$$

and with  $G(M)\!=\!\sum_{i=1}^n\!g_\mu(M(i))$  the saddle-point problem is

$$\min_{J(x)\in\mathbb{S}^{2}_{\epsilon+}} \max_{Y} \frac{\beta}{2} \|J - \hat{J}\|_{F,2}^{2} - G^{*}(Y) + \langle Y, \nabla J \rangle.$$
(36)

The primal-dual algorithm [45] then solves the sub-problems

$$Y^{t+1} = \underset{Y}{\operatorname{arg\,min}} \ \sigma G^*(Y) + \frac{1}{2} \|Y - Y^t - \sigma \nabla Z^t\|_{F,2}^2$$
$$J^{t+1} = \underset{J(x)\in\mathbb{S}^2_{\epsilon_+}}{\operatorname{arg\,min}} \frac{\tau\beta}{2} \|J - \hat{J}\|_{F,2}^2 + \frac{1}{2} \|J - J^t + \tau \nabla^* Y^{t+1}\|_{F,2}^2.$$

The minimization in J can be written as follows:

$$\min_{J(x)\in\mathbb{S}^2_{\epsilon_+}} \frac{\tau\beta+1}{2} \|J-\tilde{J}\|_{F,2}^2, \quad \tilde{J}=\frac{\tau\beta\hat{J}-J^t+\tau\nabla^*Y^{t+1}}{\tau\beta+1}.$$

The problem is decoupled for each pixel, and it is solved by pixel-wise projecting  $\tilde{J}$  onto the cone  $\mathbb{S}^2_{\epsilon+}$ . This projection is accomplished by computing the eigenvector decomposition of

the matrix  $\tilde{J} = \tilde{Q}\tilde{\Lambda}\tilde{Q}^T$  and setting to  $\epsilon$  any eigenvalues below this value, that is,  $J = \tilde{Q}\max(\tilde{\Lambda},\epsilon)\tilde{Q}^T$ . As  $\tilde{J}$  is a 2  $\times$  2 symmetric matrix, we have closed-form expressions for its eigendecomposition with computational cost of  $\mathcal{O}(n)$ .

We use again Moreau's identity to substitute the minimization in Y by the following minimization in M:

$$M^{\star} = \underset{M}{\operatorname{arg\,min}} \ G(M) + \frac{\sigma}{2} \|M - \frac{Y}{\sigma}\|_{F,2}^{2}.$$
 (37)

$$M^{\star} = \underset{M}{\operatorname{arg\,min}} \left\| \sum_{i} g_{\gamma}(M(i)) + \frac{\sigma}{2} \left\| M(i) - \frac{\hat{Y}(i)}{\sigma} \right\|_{F}^{2}.$$
 (38)

As the minimization is decoupled for each pixel, we only need to minimize pixel-wise  $g_{\mu}(\boldsymbol{v}) + \frac{\sigma}{2} \|\boldsymbol{v} - \frac{\hat{Y}(i)}{\sigma}\|_{F}^{2}$  in  $\boldsymbol{v} \in \mathbb{R}^{2\times 4}$ . This function has the same form of (31) and closed-form solution. The final procedure is summarized in Algorithm 2.

$$\begin{array}{l} \text{Initialize } J^0 = \hat{J}, \ Y^0 = \mathbf{0}, \ Z^0 = J^0. \\ \text{Choose } \tau, \sigma > 0, \ \theta \in [0, 1]. \\ \text{while } \|J^{t+1} - J^t\| > 1^{-4} \ \mathbf{do} \\ \\ \|Y^{t+1}(i) = \frac{\hat{Y}(i)}{\max(\|\hat{Y}(i)\|, 1 + \sigma\mu)}, \ \ \hat{Y} = Y^t - \sigma \nabla Z^t \\ J^{t+1}(i) = \tilde{Q}(i) \max(\tilde{\Lambda}(i), \epsilon) \tilde{Q}^T(i) \\ \\ \|\tilde{Q}, \tilde{\Lambda}\| = \operatorname{eig}(\frac{\tau \beta \hat{J} - J^t + \tau \nabla^* Y^{t+1}}{\tau \beta + 1}) \\ Z^{t+1} = \ J^{t+1} + \theta(J^{t+1} - J^t) \end{array}$$

**Algorithm 2:** Efficient minimization associated to the estimation of the structure tensor (35). J(i), Y(i) are the values of the tensor fields J and Y at pixel *i*.

# D. Regularization of the NL Structure Tensor

To regularize the NL structure tensor, we solve

$$\min_{\substack{L_G \\ v = \text{tr}[\hat{L}_G L_G]}} \sum_{i \in \Omega} g_{\nu}(\nabla_G v) + \frac{\beta}{2} \| L_G(i) - \hat{L}_G(i) \|_F^2$$
(39)

by re-formulating it as the constrained minimization

$$\min_{L_G} F_G(\boldsymbol{p}_G) + \frac{\beta}{2} \| L_G - \hat{L}_G \|_{F,2}^2 \text{ s.t. } \boldsymbol{p}_G = P_G L_G, \quad (40)$$

where  $P_G$  is the linear operator that combines  $\nabla_G$  with the node constraint on v, i.e.,  $P_G L_G(i) = \nabla_G \operatorname{tr}[\hat{L}_G(i) L_G(i)]$ .

Problem (40) has the same form as (27) if we substitute the linear operator K by  $P_G$  and A = Id. By incorporating these changes into Algorithm 1, we obtain Algorithm 3.

$$\begin{array}{l} \textbf{Initialize } L_G^0 = z^0 = \log \hat{J}_G, \ \boldsymbol{y}^0 = \boldsymbol{0}, \ \tau, \sigma > 0, \ \theta \in [0, 1] \\ \textbf{while } \| L_G^{t+1} - L_G^t \| > 1^{-4} \ \textbf{do} \\ & \left| \begin{array}{c} \boldsymbol{y}_G^{t+1}(i) = & \frac{\hat{\boldsymbol{y}}_G(i)}{max(1+\sigma\nu,|\hat{\boldsymbol{y}}_G(i)|_G)}, \ \hat{\boldsymbol{y}}_G = \boldsymbol{y}_G^t + \sigma P_G z^t \\ L_G^{t+1}(i) = & \frac{L_G^t(i) - \tau P_G^* \boldsymbol{y}_G^{t+1}(i) + \beta \hat{L}_G(i)}{1+\tau\beta} \\ z^{t+1} = & L_G^{t+1} + \theta (L_G^{t+1} - L_G^t) \end{array} \right. \\ \end{array}$$

Algorithm 3: Efficient minimization of (23).

# V. NUMERICAL EXPERIMENTS

We present both quantitative and qualitative results on image denoising, deblurring, and compressed-sensing reconstruction.

In denoising we add Gaussian noise to the images to define our measurements f; in deblurring f is the convolution of the original image with a Gaussian kernel of size  $\sigma$ ; while in compressed sensing f are m Fourier measurements radially sampled in the frequency domain.

We compare our local method to classic TV regularization, as our technique can be considered as a generalization of it. To compare our model to anisotropic diffusion based on the structure tensor, we use the anisotropic regularizer recently proposed by [18]. We choose this anisotropic method because it is defined in a regularization framework comparable to ours, relies also on convex techniques to solve the minimization problem, and outperforms state-of-the-art regularization methods [18]. The parameters of each model ( $\alpha$  for TV,  $\alpha$  and the size of the Gaussian kernel in [18]), and  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\mu$  for our model) have been optimized manually for the best peak SNR, which is the metric used in our evaluation.

For the non-local method, we compare its performance to BM3D [54] and non-local TV of [55], where the weights of the NL regularizers are computed from the reconstructions obtained with the respective local versions. Both methods are the state-of-the-art in non-local techniques: BM3D outperformis in image denoising but has restricted applications, while NL TV offers a general framework comparable to our method. Due to its formulation, BM3D can only be applied to image denoising – and to some extend to deblurring – and we restrict our comparison to this application; this is in fact the main drawback of BM3D compared to our regularization, which can be applied to any inverse problem.

# A. Results

We present our results in Figures 1-5 and Tables I-III, and we analyze them by answering several questions.

1) Isotropic vs Anisotropic Regularization: The main difference between our model and classic TV and Dirichlet regularizers lies in its anisotropy. Anisotropy is also a feature of natural images, both of highly oriented images like fingerprints and of textured images like *Barbara*; this results in an improved performance of our regularizer in comparison to classic TV: 0.55 dB in average for denoising, 0.8 dB for deblurring, and 1.4 dB for CS reconstruction. Our experiments show that all the images benefit from the use of an adaptive regularizer, with the improvement is limited to textured images.

2) Effects of non-differentiability in  $\mathcal{R}_J$ : Compared to regularizers based on  $\ell_1$  penalties, like TV or [18], our model allows for classic diffusion when the image variation is small by the use of the robust Huber norm. This eliminates the staircase effect associated with  $\ell_1$ -minimization models that characterizes total variation. Such an effect is visible in Lena's shoulder or the sky of boat and castle images.

3) Robust Estimation of Structure Tensor: Another point that differentiates our model from regularization schemes based on the structure tensor is the estimation of this tensor. While [1], [15], [16], [18] use Gaussian smoothing of (5) to locally average the components of this tensor, our averaging takes into account the local structure of the image, by formulating the estimation as a tensor denoising problem, and

the nature of the tensor measurements by the use of log-Euclidean metrics. While the benefits of log-Euclidean metrics depend on the application (it improves reconstruction for image deblurring, but degrades for denosing and compressed sensing), our estimation of the structure tensor as an SDP optimization is beneficial: an average gain of 0.85 dB over [18] in compressed sensing, 0.5 in deblurring, and 0.06 in denoising. Our model is in fact more robust for more ill-posed problems, always outperforming TV and [18] in compressed sensing and deblurring, while being comparable to it [18] in denoising for high levels of noise.

4) Local vs Non-Local Method: Figures 4-5 compare our local and non-local regularizers and shows how non-local regularization visually improves image reconstruction in compressed sensing, not only for textured images. This improvement does not extend to the other applications.

5) Use of geometry in non-local methods: Compared to non-local regularizes, our model improves signal reconstruction by exploiting the geometric information of the non-local graph. While non-local TV defines an isotropic regularizer in the graph of image patches, our non-local model is associated with an anisotropic diffusion operator that exploits the geometry of the image in the non-local graph. As in the local case, our anisotropic model outperforms its isotropic counterpart, the NL TV of [55], in all the denoising, deblurring, and compressed-sensing experiments.

For image denoising we also compare our model to BM3D [54], where multiple image patches collaboratively denoise each image pixel. Although BM3D outperforms the rest of techniques for image denoising, its formulation does not generalize to linear inverse problems. Our regularizer substitutes NL TV in any variational model and is therefore more general.

#### B. Discussion and Limitations

Our model relies on the structure tensor to estimate the image geometry and improve regularization, as a result, it only outperforms traditional TV if the structure tensor can be reliably estimated from  $u^0$ . For this reason, as the data is degraded – by increasing additive noise in denoising, increasing the size of the blurring kernel in deblurring, or reducing the measurements in compressed sensing– the relative performance of our approach degrades. An example of this behavior appears in Table I for denoising, where our model and [18] become comparable as the noise level increases.

The limitation of the NL method stems from the size of variables derived from differential operator and the accuracy of the weights that define the NL graph. Indeed, as NL methods define a gradient vector with as many components as NL neighbors,  $\nabla u(i)$  has  $\nu_i$  components for each pixel and its associated structure tensor  $\nu_i^2$ ; with  $\nu_i$  in the range 5 - 9 and  $10^4 - 10^5$  pixels per image, the proposed NL method has large memory requirements. The second limitation stems from the dependency of the NL weights (20) on the unknown image, that we overcome by computing the weights from an approximate image estimate. In our experiments, this strategy is very successful for CS, where our NL technique outperforms the local one, but partially fails in image deblurring and

denoising, where our NL technique outperforms NL TV but fails to improve our local reconstruction. This is a general limitation of the NL regularization framework of [3], [55].

In terms of computation, our local method is in average 3-5 times slower than TV regularization and 3-4 times slower than [18], with performance depending on the application and experimental setting. The non-local version is 6-8 times slower than NL-TV, with 70-80% of the time dedicated to the estimation of the high-dimensional NL structure tensor.



(a) noisy image  $\sigma_n = 0.05$ 



(b) TV reconstruction



(a) noisy image  $\sigma_n = 0.05$ 



(c) anisotropic regularizer [18]



(e) noisy image  $\sigma_n = 0.05$ 



(g) anisotropic regularizer [18] (h) our local method Fig. 1: Image denosing with noise level  $\sigma_n = 0.05$ .

# VI. CONCLUSIONS

We propose an adaptive regularizer for image reconstruction inspired by classic diffusion PDEs. The new regularizer adapts



(b) TV reconstruction



(d) our local method



(f) TV reconstruction







(e) noisy image  $\sigma_n = 0.075$ 





(g) anisotropic regularizer [18] (h) our local method Fig. 2: Image denosing with noise level  $\sigma_n = 0.05 - 0.075$ .

to the geometry of each image and naturally extends to nonlocal operators for texture recovery. Compared to diffusion PDEs, our variational formulation is able to reconstruct nonsmooth images and allows for modern optimization techniques. In particular, we develop efficient algorithms for image denoising, deblurring, and compressed-sensing reconstruction by solving a sequence of proximal convex problems with analytical closed-form solutions. Our experiments show a consistent gain in accuracy over classic regularization in both local and non-local settings.

#### ACKNOWLEDGEMENT

This research supported **SNSF** is by grants P2ELP2\_148890, FA9550-12-1-0364:P00002, and N00014-11-1-0863:P00010.

(c) anisotropic regularizer [18]

(d) our local method





(a) Fourier back projection of f



(c) anisotropic regularizer [18]



(e) NL TV reconstruction



(b) TV reconstruction



(d) our local method



(f) our NL method

| Fig. 4: Compressed-sensing with 18% of Fourier samples. |       |       |       |       |       |       |       |       |       |  |  |  |  |  |
|---------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|
| $\sigma$ noise                                          |       | 5%    |       |       | 7.5%  |       | 10%   |       |       |  |  |  |  |  |
|                                                         | [55]  | ours  | [54]  | [55]  | ours  | [54]  | [55]  | ours  | [54]  |  |  |  |  |  |
| lena                                                    | 17.51 | 17.71 | 18.62 | 15.27 | 15.50 | 16.15 | 13.74 | 14.04 | 14.74 |  |  |  |  |  |
| barbara                                                 | 17.82 | 18.02 | 18.87 | 15.47 | 15.69 | 16.51 | 13.74 | 13.91 | 14.94 |  |  |  |  |  |
| castle                                                  | 17.96 | 18.12 | 19.36 | 15.72 | 15.75 | 16.94 | 14.17 | 13.90 | 15.35 |  |  |  |  |  |
| finger                                                  | 13.06 | 13.12 | 13.40 | 10.39 | 10.53 | 11.00 | 8.58  | 8.77  | 9.42  |  |  |  |  |  |
| baboon                                                  | 13.52 | 13.66 | 14.16 | 11.24 | 11.41 | 11.93 | 9.72  | 9.88  | 10.40 |  |  |  |  |  |
| monarch                                                 | 13.82 | 14.06 | 14.92 | 11.21 | 11.50 | 12.26 | 9.39  | 9.70  | 10.42 |  |  |  |  |  |

TABLE IV: Peak SNR in denoising with Gaussian noise. The first two columns compare our NL method to NL-TV [55], the last column show the results from BM3D. Our NL method outperforms the general NL variational regularizer [55], but does worse than the denoising-specific technique BM3D [54].

### REFERENCES

- [1] J. Weickert, Anisotropic diffusion in image processing. Stuttgart:
- [1] J. WELKEL, AMJOINTOPIC alfusion in image processing. Stuttgart: Teubner Stuttgart, 1998, vol. 1.
  [2] G. Gilboa and S. Osher, "Nonlocal operators with applications to image processing," *Multiscale Modeling and Simulation*, vol. 7, no. 3, pp. 1005–1028, 2008.
- [3] D. Zhou and B. Schölkopf, "Regularization on Discrete Spaces," in Pattern Recognition. Lecture Notes in Computer Science. Springer,
- Pattern Recognition. Lecture Notes in Computer Science. Springer, 2005, vol. 80, pp. 361–368.
  [4] N. Paragios, Y. Chen, and O. D. Faugeras, Handbook of Mathematical Models in Computer Vision. Springer, 2006.
  [5] O. Scherzer and J. Weickert, "Relations Between Regularization and Diffusion Filtering," Journal of Mathematical Imaging and Vision, vol. 63, pp. 43–63, 2000.
- [6] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," *Physica D: Nonlinear Phenomena*, vol. 60, no. 1-4, pp. 259-268, 1992.

- [7] M. Loog and F. Lauze, "The improbability of harris interest points." TEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1141–1147, 2010.
- (vol. 52, no. 6, pp. 1141–1147, 2010.
  [8] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 12, no. 7, pp. 629–639, Jul. 1990.
  [9] E. Dam and M. Nielsen, "Exploring Non-linear Difusion: The Difusion Explore" Scale Surger and Machine Intelligence in Computer Vision on 264, 272
- Echo," Scale-Space and Morphology in Computer Vision, pp. 264-272, 2001
- [10] J. Weickert, B. M. t. H. Romeny, and M. A. Viergever, "Efficient and reliable schemes for nonlinear diffusion filtering," *IEEE Transactions*
- on Image Processing, vol. 7, no. 3, pp. 398–410, 1998. J. V. D. Weijer and R. V. D. Boomgard, "Least squares and robust estimation of local image structure," *International Journal of Computer Vision*, vol. 64, no. 2, pp. 143–155, 2005.
- [12] S. K. Nath and K. Palaniappan, "Adaptive robust structure tensors for [12] S. K. Nahi and K. Palainappan, Adaptive robust structure tensors for orientation estimation and image segmentation," in *Advances in Visual Computing*. Springer, 2005, pp. 445–453.
  [13] T. Brox, J. Weickert, B. Burgeth, and P. Mrázek, "Nonlinear structure tensors," *Image and Vision Computing*, vol. 24, no. 1, pp. 41–55, 2006.
  [14] T. Brox, R. Van Den Boomgaard, F. Lauze, J. Van De Weijer, J. Weickert, P. Mrázek, and P. Kornprobst, "Adaptive structure tensors and their applications 'in Visualization and processing of tensor fields. Springer
- applications," in Visualization and processing of tensor fields. Springer, 2006, pp. 17–47.
- [15] M. Grasmair and F. Lenzen, "Anisotropic Total Variation Filtering," Applied Mathematics & Optimization, vol. 62, no. 3, pp. 323–339, 2010.
- A. Roussos and P. Maragos, "Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals," [16] IEEE International Conference in Image Processing, pp. 4141-4144, 2010.
- [17] N. Sochen, R. Kimmel, and R. Malladi, "A general framework for low level vision." *IEEE Transactions on Image Processing*, vol. 7, no. 3, pp. 310–318, 1998.
- [18] S. Lefkimmiatis, A. Roussos, M. Unser, and P. Maragos, "Convex Generalizations of Total Variation based on the Structure Tensor with Applications to I voir Variation based Space and Variational Methods in Computer Vision, vol. 7893, pp. 48–60, 2013. Y. Dong and M. Hintermüller, "Multi-scale Total Variation with Auto-mated Regularization Parameter Selection for Color Image Restoration,"
- [19] in Scale Space and Variational Methods in Computer Vision SE - 23, ser. Lecture Notes in Computer Science, X.-C. Tai, K. Mørken, M. Lysaker, and K.-A. Lie, Eds. Springer Berlin Heidelberg, 2009, vol. 5567, pp. 271-281.
- [20] G. Gilboa, N. Sochen, and Y. Y. Zeevi, "Variational denoising of partly textured images by spatially varying constraints," pp. 2281-2289, 2006.
- [21] M. Grasmair, "Locally Adaptive Total Variation Regularization," in Scale [21] M. Grasmair, "Locally Adaptive Total Variation Regularization," in *Scale Space and Variational Methods in Computer Vision*, ser. Lecture Notes in Computer Science, X.-C. Tai, K. Mø rken, M. Lysaker, and K.-A. Lie, Eds. Springer Berlin Heidelberg, 2009, vol. 5567, pp. 331–342.
  [22] K. Bredies, K. Kunisch, and T. Pock, "Total generalized variation," *SIAM Journal on Imaging Sciences*, vol. 3, no. 3, pp. 492–526, 2010.
  [23] I. Bayram and M. E. Kamasak, "Directional Total Variation," *IEEE Signal Processing Letters*, vol. 19, no. 12, pp. 781–784, 2012.
  [24] P. I. Huber. "Robust Estimation of a Location Parameter," pp. 73–101,

- [24] P. J. Huber, "Robust Estimation of a Location Parameter," pp. 73-101, 1964.
- [25] P. Blomgren and T. F. Chan, "Color TV: total variation methods for restoration of vector-valued images." *IEEE Transactions on Image Processing*, vol. 7, no. 3, pp. 304–309, Jan. 1998.
- M. Moakher, "A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices," *SIAM Journal on* [26] Matrix Analysis and Applications, vol. 26, no. 3, pp. 735-747, 2005.
- [27] P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Con-
- [27] P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, and A. Connelly, "A rigorous framework for diffusion tensor calculus." *Magnetic Resonance in Medicine*, vol. 53, no. 1, pp. 221–225, 2005.
  [28] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, "Log-Euclidean metrics for fast and simple calculus on diffusion tensors." *Magnetic Resonance in Medicine*, vol. 56, no. 2, pp. 411–421, Aug. 2006.
  [29] G. Rosman, Y. Wang, X. X.-C. Tai, R. Kimmel, and A. Bruckstein, "Fast Regularization of Matrix-Valued Images," in *Efficient Algorithms for Global Optimization Methods in Computer Vision SE 2*, ser. Lecture Notes in Computer Science, A. Bruhn, T. Pock, and X.-C. Tai, Eds. Springer Berlin Heideherg. 2014, pp. 19–43. Springer Berlin Heidelberg, 2014, pp. 19–43. [30] A. Szlam, M. Maggioni, and R. R. Coifman, "A general framework for
- adaptive regularization based on diffusion processes on graphs," Yale technichal report, 2006.
- [31] G. Peyré, S. Bougleux, and L. Cohen, "Non-local regularization of inverse problems," European Conference on Computer Vision (ECCV), pp. 57–68, 2008.
- [32] D. Tschumperlé and L. Brun, "Image Denoising and Registration by PDE's on the Space of Patches." in *Proceedings of the International* Workshop on Local and Non-Local Approximation in Image Processing (LNLA'08), 2008, pp. 32–40.
- A. Buades, B. Coll, and J.-M. Morel, "A review of image denoising algorithms, with a new one," *SIAM Journal on Multiscale Modelling and Simulation*, vol. 4, no. 2, pp. 490–530, 2005.
   A. Elmoataz, O. Lezoray, and S. Bougleux, "Nonlocal Discrete Regu-[33]
- [34] Iarization on Weighted Graphs: A Framework for Image and Manifold Processing," *IEEE Transactions on Image Processing*, vol. 17, no. 7, pp. 1047-1060, 2008.

- [35] G. Gilboa and S. Osher, "Nonlocal Linear Image Regularization and Supervised Segmentation," *Multiscale Modeling and Simulation*, vol. 6, no. 2, pp. 595–630, 2007.
- X. Bresson and T. F. Chan, "Non-local unsupervised variational image segmentation models," *UCLA CAM Report*, vol. 08-67, pp. 1–34, 2008. X. Zhang, M. Burger, X. Bresson, and S. Osher, "Bregmanized non-[36]
- [37] local regularization for deconvolution and sparse reconstruction," SIAM
- local regularization for deconvolution and sparse reconstruction," SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 253–276, 2010.
  [38] V. Estellers, J.-P. Thiran, and X. Bresson, "Enhanced Compressed Sensing Recovery with Level Set Normals," *IEEE Transactions on Image Processing*, vol. 22, no. 7, pp. 2611–2627, Mar. 2013.
  [39] R. R. Coifman and M. Maggioni, "Diffusion wavelets," *Applied and Computational Harmonic Analysis*, vol. 21, no. 1, pp. 53–94, 2006.
  [40] R. Courant, K. Friedrichs, and H. Lewy, "On the Partial Difference Equations of Mathematical Physics," *IBM Journal of Research*, vol. 3, no. March. pp. 215–234, 1967.
- [41] G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu,
- "Epigraphical splitting for solving constrained convex formulations of inverse problems with proximal tools," *arXiv:1210.5844*, 2012.
- [42] A. Chambolle, "An algorithm for Mean Curvature Motion," *Interfaces and Free Boundaries*, vol. 6, pp. 195–218, 2004.
  [43] T. F. Chan, G. H. Golub, and P. Mulet, "A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration," *SIAM Journal or Scientific Computing*, vol. 20, pp. 1064, 1000. on Scientific Computing, vol. 20, no. 6, p. 1964, 1999. [44] M. Zhu, S. J. Wright, and T. F. Chan, "Duality-based algorithms for
- total-variation-regularized image restoration," *Computational Optimiza-tion and Applications*, vol. 47, no. 3, pp. 377–400, Dec. 2010. A. Chambolle and T. Pock, "A First-Order Primal-Dual Algorithm for
- [45] [45] A. Chahoolic and T. Fock, "A Pristored Thina-Dual Algorithm for Convex Problems with Applications to Imaging," *Journal of Mathematical Imaging and Vision*, vol. 40, no. 1, pp. 120–145, Dec. 2010.
   [46] P. L. Combettes and J.-C. Pesquet, "A Proximal Decomposition Method for Solving Convex Variational Inverse Problems," *Inverse problems*,
- Y. Wang, J. Yang, W. Yin, and Y. Zhang, "A new alternating minimiza-
- [47] Wang, J. Tang, W. Thi, and T. Zhang, A new anternating minimuza-tion algorithm for total variation image reconstruction," *SIAM Journal* on *Imaging*, pp. 1–24, 2008.
   T. Goldstein and S. Osher, "The Split Bregman Method for L1-Regularized Problems," *SIAM Journal on Imaging Sciences*, vol. 2, no. 2, 222, 2000.
- [48] 323, 2009.
- [49] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, "Bregman Iterative Algo-
- [45] W. Thi, S. Ostel, D. Cotinab, and J. Darboli, "Diegman leadive Algorithms for 11-Minimization with Applications to Compressed Sensing," *SIAM Journal on Imaging Sciences*, vol. 1, no. 1, pp. 143–168, 2008.
  [50] C. Wu and X.-C. Tai, "Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models," *SIAM Journal on Imaging Sciences*, vol. 3, no. 3, pp. 300–220.0, 2010. 339 2010
- [51] H. Bauschke and P. L. Combettes, *Convex analysis and monotone operator theory in Hilbert spaces*, K. Dilcher and K. Taylor, Eds. Halifax: Springer, 2011.
  [52] L. Condat, "A primal-dual splitting method for convex optimization
- involving Lipschitzian, proximable and linear composite terms," *Journal of Optimization Theory and Applications*, pp. 1–17, 2013.
   M. a. T. Figueiredo and J. M. Bioucas-Dias, "Restoration of Poissonian"
- [53] M. a. T. Figueiredo and J. M. Bioucas-Dias, "Restoration of Poissonian Images Using Alternating Direction Optimization," *IEEE Transactions* on Image Processing, vol. 19, no. 12, pp. 3133–3145, Jan. 2010.
  [54] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering." *IEEE Transactions* on Image Processing, vol. 16, no. 8, pp. 2080–2095, Jan. 2007.
  [55] G. Gilboa and S. Osher, "Nonlocal Operators with Applications to Image Processing, Multiagel Modeling and Simulation vol. 7, no. 3, p. 1005.
- Processing," Multiscale Modeling and Simulation, vol. 7, no. 3, p. 1005, 2009



(a) Fourier back projection of f



(c) anisotropic regularizer [18]



(e) NL TV reconstruction



(g) Fourier back projection of f



(i) anisotropic regularizer [18]







(d) our local method



(f) our NL method



(h) TV reconstruction



(j) our local method



(1) our NL method (k) NL TV reconstruction Fig. 5: Reconstruction from 18% of Fourier samples.



(a) noisy image  $\sigma_n = 0.075$ 







(d) our local method

(b) TV reconstruction (c) anisotropic regularizer [18] Fig. 3: Image denosing with noise level  $\sigma_n = 0.075$ .

| $\sigma$ noise |       | $5^{\circ}_{2}$ | %     |       |       | 7.5   | 5%    | 10%   |       |       |       |       |  |  |
|----------------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                | TV    | [18]            | ours  | logE  | TV    | [18]  | ours  | logE  | TV    | [18]  | ours  | logE  |  |  |
| lena           | 16.84 | 17.46           | 17.99 | 15.13 | 14.48 | 15.11 | 15.58 | 12.06 | 13.02 | 13.62 | 13.89 | 10.61 |  |  |
| barbara        | 17.09 | 17.77           | 18.01 | 15.26 | 14.77 | 15.44 | 15.61 | 12.24 | 13.13 | 13.80 | 13.84 | 10.50 |  |  |
| castle         | 17.90 | 18.34           | 18.43 | 16.88 | 15.65 | 16.10 | 16.09 | 13.82 | 14.15 | 14.56 | 14.46 | 12.02 |  |  |
| boat           | 15.14 | 15.52           | 15.60 | 13.62 | 12.84 | 13.23 | 13.26 | 11.09 | 11.52 | 11.82 | 11.83 | 9.16  |  |  |
| fingerprint    | 12.24 | 12.46           | 12.58 | 11.99 | 9.23  | 9.54  | 9.71  | 9.14  | 7.31  | 7.67  | 7.85  | 7.25  |  |  |
| baboon         | 13.52 | 13.77           | 13.77 | 12.72 | 11.23 | 11.55 | 11.43 | 10.02 | 9.76  | 10.04 | 9.91  | 8.11  |  |  |
| monarch        | 13.71 | 13.98           | 14.33 | 13.10 | 11.01 | 11.35 | 11.65 | 10.12 | 9.19  | 9.52  | 9.72  | 7.88  |  |  |

TABLE I: Denoising experiments with different levels of Gaussian noise  $\sigma$ . The first two columns show the peak SNR of TV and the anisotropic regularizer of [18], the last two our model with Euclidean (ours) or log-Euclidean (logE) metrics.

| blurr       | $\sigma = 1$ |       |         |      |               |      | $\sigma = 1.5$ |       |         |               |        |      |      | $\sigma = 2$ |      |      |        |  |  |
|-------------|--------------|-------|---------|------|---------------|------|----------------|-------|---------|---------------|--------|------|------|--------------|------|------|--------|--|--|
|             | local        | NL 1  | nethods | 10   | local methods |      |                | NL    | methods | local methods |        |      |      | NL methods   |      |      |        |  |  |
|             | TV [18]      | our   | logE    | [55] | NL our        | ΤV   | [18]           | our   | logE    | [55]          | NL our | TV   | [18] | our          | logE | [55] | NL our |  |  |
| lena        | 6.50 6.90    | 7.76  | 8.47    | 6.56 | 6.82          | 6.42 | 6.88           | 7.52  | 7.84    | 6.54          | 6.86   | 6.33 | 6.79 | 6.79         | 7.25 | 6.59 | 6.83   |  |  |
| barbara     | 6.88 7.30    | 8.58  | 9.34    | 7.10 | 7.26          | 6.90 | 7.33           | 8.30  | 8.64    | 7.12          | 7.29   | 6.84 | 7.28 | 7.73         | 7.90 | 7.12 | 7.13   |  |  |
| castle      | 9.37 9.62    | 10.52 | 11.08   | 9.19 | 9.25          | 9.40 | 9.63           | 10.23 | 10.41   | 9.32          | 9.43   | 9.34 | 9.59 | 9.77         | 9.81 | 9.36 | 9.36   |  |  |
| boat        | 6.38 6.69    | 7.62  | 8.40    | 6.52 | 6.78          | 6.34 | 6.69           | 7.28  | 7.66    | 6.48          | 6.75   | 6.28 | 6.64 | 6.93         | 7.05 | 6.40 | 6.62   |  |  |
| fingerprint | 2.55 2.58    | 2.85  | 3.10    | 2.52 | 2.54          | 2.55 | 2.59           | 2.71  | 2.74    | 2.55          | 2.58   | 2.54 | 2.58 | 2.59         | 2.58 | 2.56 | 2.56   |  |  |
| baboon      | 6.08 6.25    | 7.21  | 7.72    | 6.03 | 6.26          | 6.05 | 6.21           | 6.85  | 7.04    | 6.02          | 6.25   | 6.00 | 6.14 | 6.39         | 6.44 | 5.99 | 6.11   |  |  |
| monarch     | 3.75 3.91    | 4.80  | 5.56    | 3.92 | 4.12          | 3.68 | 3.84           | 4.18  | 4.45    | 3.82          | 3.97   | 3.57 | 3.75 | 3.59         | 3.67 | 3.67 | 3.60   |  |  |

TABLE II: Peak SNR in deblurring with Gaussian kernels of width  $\sigma$ . The first four columns compare our local method – with Euclidean and log-Euclidean (logE) metrics – to TV and the anisotropic regularizer of [18], the last two columns compare our NL model to NL TV [2]. Our local method outperforms TV and [18], while our NL technique outperforms TV and NL TV.

| m/n         | 12%                      |       |       |       |       |                          |       |       | 1     | 8%    |       |        | 24%    |       |            |       |       |        |  |
|-------------|--------------------------|-------|-------|-------|-------|--------------------------|-------|-------|-------|-------|-------|--------|--------|-------|------------|-------|-------|--------|--|
|             | local methods NL methods |       |       |       |       | local methods NL methods |       |       |       |       |       |        | ocal n | NL m  | NL methods |       |       |        |  |
|             | TV                       | [18]  | our   | logE  | [55]  | NL our                   | TV    | [18]  | our   | logE  | [55]  | NL our | TV     | [18]  | our        | logE  | [55]] | NL our |  |
| lena        | 10.32                    | 10.80 | 11.47 | 11.54 | 10.73 | 11.84                    | 15.97 | 17.15 | 19.00 | 17.09 | 17.40 | 19.11  | 20.13  | 21.78 | 23.25      | 20.26 | 22.15 | 23.07  |  |
| barbara     | 10.12                    | 10.62 | 11.78 | 11.55 | 10.50 | 11.92                    | 15.42 | 16.58 | 18.02 | 17.04 | 16.85 | 18.51  | 19.57  | 21.44 | 22.64      | 20.47 | 21.52 | 22.80  |  |
| castle      | 12.19                    | 12.47 | 12.66 | 12.05 | 12.27 | 12.58                    | 16.61 | 17.08 | 18.30 | 16.75 | 17.30 | 18.28  | 19.82  | 20.51 | 21.57      | 19.65 | 20.97 | 21.79  |  |
| boat        | 8.69                     | 9.06  | 9.35  | 9.17  | 9.49  | 9.50                     | 13.12 | 13.78 | 14.56 | 13.51 | 13.91 | 14.80  | 16.32  | 17.10 | 18.24      | 16.37 | 17.16 | 18.04  |  |
| fingerprint | 2.75                     | 3.05  | 3.06  | 3.05  | 2.94  | 3.16                     | 3.83  | 4.30  | 4.38  | 4.44  | 4.18  | 5.20   | 5.17   | 5.81  | 5.86       | 6.78  | 5.93  | 7.99   |  |
| baboon      | 6.78                     | 7.00  | 7.11  | 7.17  | 6.86  | 7.26                     | 9.91  | 10.40 | 10.37 | 10.47 | 10.12 | 10.64  | 11.64  | 12.21 | 12.12      | 12.11 | 11.92 | 12.33  |  |
| monarch     | 4.66                     | 5.01  | 5.37  | 5.34  | 4.94  | 5.67                     | 9.92  | 10.33 | 12.57 | 10.54 | 10.68 | 12.66  | 14.39  | 15.11 | 17.49      | 14.63 | 15.55 | 17.03  |  |

TABLE III: Peak SNR in compressed-sensing reconstruction with sampling ratio m/n. The first four columns compare our local method – with Euclidean and log-Euclidean (logE) metrics – to TV and the anisotropic regularizer of [18], the last two columns compare our NL model to NL TV [2]. Our local method outperforms TV and [18], while our NL technique obtains the best overall performance from both local and NL methods.