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Abstract—Natural images exhibit geometric structures that are
informative of the properties of the underlying scene. Modern
image processing algorithms respect such characteristics by em-
ploying regularizers that capture the statistics of natural images.
For instance, Total Variation (TV) respects the highly kurtotic
distribution of the pointwise gradient by allowing for large
magnitude outlayers. However, the gradient magnitude alone does
not capture the directionality and scale of local structures in
natural images. The structure tensor provides a more meaningful
description of gradient information as it describes both the size
and orientation of the image gradients in a neighborhood of
each point. Based on this observation, we propose a variational
model for image reconstruction that employs a regularization
functional adapted to the local geometry of image by means of its
structure tensor. Our method alternates two minimization steps:
first, robust estimation of the structure tensor as a semi-definite
program; second, reconstruction of the image with an adaptive
regularizer defined from this tensor. This two-step procedure
allows us to extend anisotropic diffusion [1] into the convex
setting and develop robust, efficient, and easy-to-code algorithms
for image denoising, deblurring, and compressed sensing. Our
method extends naturally to non-local regularization, where it
exploits the local self-similarity of natural images to improve non-
local TV [2] and diffusion operators [3]. Our experiments show
a consistent accuracy improvement over classic regularization.

I. INTRODUCTION

We consider the problem of reconstructing an image u from
a set of noisy measurements f. To solve this task, we adopt
a variational formulation and describe the unknown image as
the solution of an optimization problem. Our reconstruction
method is thus characterized by a minimization problem and
a numerical algorithm to solve it.

The minimization is defined by an objective functional with
a data and a prior term:

. (0%
min R(u) + 7 [[Au - f]3, (1)

where the minimization variable, wu, is a real-valued function
defined over the image domain ). The data term couples
u with the available measurements f and depends on the
problem at hand. The /5-norm || Au — f||3 penalizes deviation
from the forward linear model Au = f caused by unmodeled
phenomena commonly referred as noise. Image denoising, de-
blurring, and compressed-sensing reconstruction, for instance,
follow this model. The prior term R (u) encodes assumptions
about the unknown that are necessary to overcome the ill-
posed nature of the problem; it is formalized as a regularization
functional that favors solutions exhibiting characteristics of
natural images, and its study is one of the cores of this paper.

Total Variation (TV) and Dirichlet energy [4] are common
regularizers in image reconstruction for both modeling and
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numerical reasons. Both functionals penalize the magnitude of
the gradient at each point by capturing the point-wise statistics
of natural images: TV models piecewise-constant images with
large homogeneous regions separated by a sparse set of edges,
while regularization with Dirichlet energy favors homogeneous
image variations with a Tikhonov penalty on image gradients.
As a result, regularization with the Dirichlet energy is not able
to recover sharp edges, while TV produces piecewise-constant
images with staircase artifacts. As optimization problems, both
regularizers result in convex functionals that have unique solu-
tions, do not suffer from local minima, and can be efficiently
minimized numerically.

In image denoising, TV can be viewed as a regularization
technique as well as a diffusion scheme driven by the geometry
of the image [5]]. This connection appears when we solve the
variational problem , known as Rudin-Osher-Fatemi (ROF)
model [|6], with gradient descent.
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min [ [Vul+ 5 fI @
u Q

Euler-Lagrange give us the optimality conditions of (2) in
terms of a PDE with the following gradient descent flow:

ou . Vu

Minimization of TV gives the term div |Vu|71Vu) that
smooths the image’s level curves with mean curvature flow and
corresponds to a non-linear diffusion with coefficient |Vu|71.
The diffusion is thus adapted to the geometry of the image in
terms of the image gradient: it is inhibited close to image edges
where |Vul is large, and encouraged in homogeneous areas
with small variations. The direction of the diffusion, however,
remains constant and parallel to Vu over the entire domain,
i.e., it is isotropic. This implicit isotropy of TV introduces an
additional prior on w, isotropic variations of its level curves,
that is not reflected in the statistics of natural images.

To study anisotropic diffusion, we follow Weickert [1] and
consider diffusion with a general diffusion tensor 7' with

% = div(TVu),
where Si is the cone of 2 x 2 symmetric positive semidefinite
matrices. To encourage diffusion along the edges of the image
but not across them, Weickert [1] defines 7'(x) as a function
of the structure tensor of the image at each point.

The structure tensor J = J(z) summarizes the orientation
of the image gradient in a neighborhood of a point. To study
orientations instead of directions, this tensor first identifies
gradients that differ only by their sign with the outer product

Jo(z) = Vu(z) @ Vu(z). %)

T(z) € S, 4)



Jo encodes directional information of u at the single point
and ignores neighborhood information. To describe directions
at a larger scale, J is defined as a local average of Jy by
convolution with a Gaussian kernel k,, thatis, J, = k, * Jo.
As a result, J,(x) is positive definite [7ﬂ and captures
geometric neighborhood characteristics more informative than
the pointwise magnitude |Vu(z)| of TV regularization.

The importance of the structure tensor stems from its eigen-
decomposition, which summarizes the distribution of image
gradients in the neighborhood of each point. Let q1,q=2 be
the orthonormal eigenvectors of J,(z) and A; > Ay > 0 its
eigenvalues, then q; gives the direction that is maximally
aligned with the image gradient in the neighborhood of z,
g the direction of maximum coherence, and A1, Ao measure
the contrast in these directions. Geometrically, {\;q,} are the
axis of an ellipse fitted to the distribution of image gradients
in the neighborhood of a point. To align and scales the axes
of this ellipse to the coordinate axes of the image domain we
introduce the local change of coordinates s(z) = A~/2Qz,
with @ = [g;qy], A = diag(\1, ). With this transform,
u o s behaves isotropically around x and is suited to isotropic
regularizers like TV; in other words, the quadratic form
associated with its structure tensor is a circle. This suggests a
method to design regularizers adapted to the geometry of each
image by means of its structure tensor.

A. Related Work

Anisotropic diffusion first became popular in the 90s with
the work of Perona and Malik [8]] in image denoising [9], but
it has recently been replaced by convex regularizers amenable
to faster minimizations than PDE-evolution techniques.

The use of the structure tensor to denoise images was intro-
duced by Weickert [10]], and several extensions have recently
followed [11]-[14]. Grasmair and Lenzen [15] proposed an
anisotropic regularizer based on the structure tensor of the
image. Their technique extends only TV for image denoising
and relies on a slow minimization algorithm based on gradient
descent. With a similar flavor, Roussos and Maragos [16]]
generalized the Beltrami flow [[17] based on the eigendecom-
position of the structure tensor. Their focus is on diffusion
not regularization, and their denoising technique cannot handle
non-differentiable functionals and suffers from slow numerical
algorithms. To overcome these limitations, the authors simpli-
fied their regularizer in [[18]] and proposed efficient algorithms
for image denoising and deblurring; their new regularizer,
however, only depends on the eigenvalues of the struture tensor
and does not makes use of the directional information available
in the eigenvectors. In contrast, our technique is able to exploit
both eigenvector and eigenvalue information by splitting the
reconstruction in two: we first estimate the structure tensor of
the image and define an adaptive regularizer for it, and we then
reconstruct the image with this regularizer. In our technique,
these two steps are iterated to improve accuracy.

IThe theoretical result of [7] shows that Jp is positive definite when the
image contains some signal and the domain of the image and support of k, are
infinite. In practice, images to be restored contain a signal to be recovered and
Gaussian kernels of moderate size lead to positive definite structure tensors.

Previous diffusion or regularization techniques based on the
structure tensor [1f], [15], [16], [18] are all implicitly designed
for applications where the tensor can be reliably estimated
by Gaussian smoothing; our technique, on the other hand,
investigates reconstructions with fewer measurements where
the structure tensor requires robust estimation techniques. For
this reason, we formulate the estimation of the structure tensor
as a regularization problem in the positive semi-definite cone,
generalizing the Gaussian smoothing of [[1], [15], [16], [18].
None of the existing models, moreover, has been extended
into the non-local setting [2]], [3] to improve reconstruction of
textured images, as we propose in Section [ITI]

More distantly related to our work are regularization func-
tionals that eliminate the staircase effect of TV by locally
varying the regularization weight [19]-[21] or by penalizing
second-order differential operators, like the Total Generalized
Variation of [22]. Compared to the former, our regularizer
also defines a varying regularization weight, but this is done
implicitly by defining the diffusion tensor as a function of the
eigenvalues of the structure tensor of the image. Comparison to
Total Generalized Variation requires comparison of the image
priors, as our model promotes piecewise-constant reconstruc-
tions while Total Generalized Variation assumes piecewise-
linear images. Such a comparison is an open question that
depends on each particular image and application.

B. Contributions

Our contributions are thus fourfold. First, design of an
adaptive regularizer that penalizes image variations taking into
account the local structure of the image. The proposed regular-
izer generalizes anisotropic TV [15], [23]] and Dirichlet energy
penalties [1] into a single functional. Compared to anisotropic
diffusion [1], [[15], [[16], the proposed approach allows for
faster numerical algorithms based on convex optimization,
instead of relying on explicit evolution of PDEs. This allows
us to recover non-smooth solutions and solve problems not
handled by diffusion techniques, like image reconstruction in
compressed sensing. Second, we propose a robust estimate of
the structure tensor by regularization of Jy, instead of the local
averaging of [1]], [15], [16], [[18] that ignores image content.
To this purpose, the estimation of the structure tensor is re-
formulated as a semi-definite program (SDP). Third, we extend
our technique to non-local regularization and improve non-
local TV and diffusion operators [2]], [3]]. Finally, we develop
efficient algorithms for the estimation of the structure tensor
and for the reconstruction of images in denoising, deblurring,
and compressed-sensing applications.

The rest of the paper is organized as follows: Section
describes the reconstruction of images and their structure
tensors, and Section [[T]] extends our technique to non-local
regularization. The numerical minimization algorithms for
these models are described in Section [[V]and the experimental
results in Section E Finally, conclusions drawn in Section

II. ADAPTIVE IMAGE RECONSTRUCTION

The main hypothesis underlying our regularization model is
that an estimate of the structure tensor of an image can signif-
icantly improve its reconstruction. This observation raises two



main questions: (i) how to estimate the structure tensor from
noisy measurements; (ii) how to incorporate the information
of the structure tensor into the reconstruction model (I). The
answer that we propose is a two-step iterative method.

In the first step of each iteration, we estimate the structure
tensor and adapt the regularizer R to the particular geometry
of the image at each point; the result is the regularizer R ;. In
the second step, we use this regularizer in the reconstruction
model to obtain an estimate of the image. The process is
iterated and we obtain the following two-step iterative method:

Jp =argmin G (J) + §||J — JA||?;72 J=Vu_1 @ Vug_1
J(z)r-e

) o
Uy, = arg min Rjk(u)+§||Au_f||§7 (6)

where «, 3, ¢ are model parameters, G (J) a regularizer on
the structure tensor, and ||J — j||2F2 = [ lJ(x) — J(z)||%
measures the distance between the structure tensor and a
coarse estimate .J with the Frobenius norm || - || .

In image denoising and deblurring, we initialize our algo-
rithm with the measurements uy = f, while in CS reconstruc-
tion we obtain a first coarse estimate with TV regularization
that is prone to staircase artifacts. By regularizing Vuy ® Vuyg
with a Huber penalty, which acts as a Laplacian regularizer
in smooth regions with small gradients, we obtain a piece-
wise smooth structure tensor that prevents image staircases
in the restoration step. The second step adapts the Huber
regularizater with this structure tensor to the image contents,
adapting smoothly the orientation and scale of the regularizer
as a result of the smoothness of Jy. This introduces diffusion
along the direction of maximum image coherence and prevents
it along the direction of maximum variation through repeated
iterations, avoiding the staircase effect of TV and acting as
Dirichlet energy regularizer in smoothly varying regions.

Combining the two stages into one leads to a reconstruction
model difficult to analyze in theory and minimize in practice.
The main difficulty lies in the dependence of R ; on u through
convolution of image derivatives and pixel-wise matrix inver-
sion, which results in a non-convex regularizer. As a result, the
minimization of the single-step method is not convex and suf-
fers from local minima and slow-convergence algorithms. As
an alternative, we estimate the structure tensor from a coarse
image estimate and refine it through regularization. We then
define the adaptive regularizer and reconstruct a better image
estimate. The novelty of our approach lies in decomposing
the problem into a sequence of convex minimizations each of
which we solve efficiently by adapting standard primal-dual
algorithms to the characteristics of the problem. This divide
and conquer strategy currently lacks a proof of convergence,
but promising experimental results motivate future analysis.

A. Adaptive Anisotropic Regularization

TV and Dirichlet regularizers quantify the variations of u
with a scalar function of the magnitude of Vu. We summarize

both functionals with the Huber penalty gﬂ [24]:

[ Vul?

R(u):/ggv(vu), gy(Vu)Z{ i |Vul<y 7

[Vu|-2 if |Vu|>y

The regularizer R is convex in u and behaves like the Dirichlet
energy in homogeneous regions, where |Vu| < +, while it
leads to TV regularization close to the image edges, where
|Vu| > ~. As a result, we can obtain Dirichlet regularization
by setting v > |||Vu|||oo, and TV with 4 = 0. In-between, a
small v recovers sharp edges because it does not over-penalize
high variations of u, while it avoids the staircase effect of TV
because it removes its singularity at Vu = 0.

To find the link with diffusion PDEs, we use Euler-Lagrange
to derive the descent flow that minimizes R (u); that is,

ou 1
— =div| ——=—=Vu ). 8
3 = (™) ®
The diffusion is still parallel to Vu and isotropic, as we need
to introduce a diffusion tensor in R for anisotropic diffusion.
Given a diffusion tensor 7' € S?‘_, we consider the regularizer
Ro(u) = / 0 (SVW),  S@) =/T@), ©

Q

where S(z) is the principal square root of matrix T(z), i.e, the
unique positive semidefinite matrix with 7'(z) = S(z) " S(x).

Its descent flow leads to an anisotropic diffusion parallel to 7":

1

ou .
—~ —div (T(JU)VU) ; m

ot T(z) =

T(x),
(10)

Equations (9) and describe the relation between the
diffusion tensor 7' of PDE methods and the proposed regular-
ization framework. With this in mind, we design a regularizer
R; = Ry adapted to each image by the defining
T as a function of its structure tensor J. In particular, we
eigendecompose .J inspired by the anisotropic diffusion []1].

Let J(z) be the estimated structure tensor of the image
at point x, with eigenvectors Q(z) = [q,(z) g5(x)] and
diagonal matrix of eigenvalues A(x); we define the diffusion
tensor T'(z) = Q(x)['(z)Q” (z) with the same orientation as
J(x) and positive eigenvalues I'(z) = T'(A(x)). To justify
our choice of I', we make use of the geometric interpretation
of {\;(x)gi(x)} as the axes of the ellipse that describes the
orientation and size of the image gradient locally. To use an
isotropic regularizer, it is necessary to rotate and scale the axes
of the ellipse to coincide with the coordinate axes of the image
domain; this requires eigenvalues I'(x) = A~!(x) and corre-
sponds to the change of coordinates S(x) = A~z (2)QT ()
that, locally applied to the image, leads to a structure tensor
with the unit circle as quadratic form. To avoid instabilities in
essentially flat regions, where \; < €, we introduce a lower
bound in the eigenvalues of the diffusion tensor similar to
Weickert’s diffusion; this acts as v; = min(\;*,¢~!) and is
directly implemented in the estimation of the structure tensor
with the constraint J > € of Equation ().

2In an abuse of notation, we use the same expression for the Huber norm
gy (2) throughout the paper, even though the dot product operator in |z|? =
vz - z is defined by the Hilbert space associated with variable z.



Finally, we need to compute the tensor T used in the
regularizer (). Tensor T = max(7,|SVu|)T is a scaled
version of the diffusion tensor 7" with a spatially variable factor
that depends on the image, which is not known. To overcome
this issue we mimic explicit PDE evolution techniques used in
anisotropic diffusion and approximate |SVu| with the current
estimate of J (instead of the current u estimate of explicit PDE
evolution). Our approximation uses the following relation:

1SVl = \/(Va) "TVu = \/A7 a1 - Vu)? + Ay (g2 - Vu)2,

where (g; - Vu)? o< |\;|? for the structure tensor of u. Our
approximation thus gives |SVu| o< v/A1 + A2, and we can set
T = max(y,vA + X2)T and let the model parameter o
absorb the remaining constant scaling.

In brief, given an estimate of the structure tensor, we
compute its eigen-decomposition J = QAQT at each point
and define our adaptive regularizer

Q
In terms of diffusion, this gives us the tensor

max (v, VA1 + A2) g1
max(y, max(,/7, VA1 + A2)VVu' J-1Vu)) )

where 7! = A\11q; @ g1 + )5 'q, @ gy,

In flat regions with A\; &~ |[Vu|? < € < +, our estimation of
the structure tensor ensures that \; < ¢!, ¢ 1|[Vu|? < 1 and
diffusion with T'= ¢~ !(q, ® q; + g, ® q5) is isotropic.

In non-flat regions with |[Vu|? > ¢, we can simplify the
diffusion tensor taking into account that J approximates the
structure tensor and q; ~ lg—g‘, q,-Vu ~0,and \; ~ |Vul|?.

As aresult Vu' J1Vu ~ 1 and

~ max(y, VA1 + A2) g1
max(7y, max(,/7, VA1 + A2)) ’

Let c = m, in smooth regions with v > /A1 + Ay

T
max(7, v/7)

and the diffusion has a smaller diffusivity cA;' along the

direction of maximum variation ¢; and a larger diffusivity

c\; ' along the direction of maximum coherence go. If the

region is isotropic, A\; &~ A2 and we obtain isotropic diffusion.
Close to edges, 7 < VA1 + A2 with Ay < A; and

VA VA
A1 max(y, vA1)) A2 max(y, VA1)

diffusion accross the edge (direction g;) is minimal and
inversely proportional to the edge strength as /A1 ~ |Vul,
while diffusion along the edge (gy) is large. As a result,
our regularizer recovers sharp edges and emphasizes coherent
directional structures.

T =

T ~ J ! :cAf1q1®q1+cA§1q2®q2,

T~ q,®q; + q; ® qy,

B. Robust Estimation of the Structure Tensor

Each iteration the structure tensor is estimated in two steps.
First, we obtain a noisy point-wise estimate .J from the image
estimate uyi_1, and we then regularize it to obtain Jj.

The first estimate of the structure tensor is computed directly
as the outer product of image gradients as in Equation (3), i.e.,

(11

The definition of .J in terms of derivatives makes it very sensi-
tive to noise and artifacts in u;_1 and calls for regularization.
Compared to the Gaussian smoothing of [1]], [15], [16]], [18],
our regularization technique is adapted to the structure of each
J.

j = Vug_1 ® Vug_1.

As in any regularization model, we have a smoothness and a
data term: the smoothness term is a generalization of TV and
Dirichlet penalties, while the data term penalizes deviations
from J in the positive semi-definite cone.

Let VJ be the Jacobian matrix of component-wise gradients
and | - | the Frobenius norm, our smoothness term

12|%

Wﬂ=AwWA %@:{zu

zlp— 4 if |z|r>p

if |z|p<p

(12)

uses the Huber norm g,, to allow sharp discontinuities at the
boundaries of textured regions and small variations in within.
In fact, setting u = 0 leads to vectorial TV [25]], while p >
[|VJ|F|leo provides a Dirichlet regularization equivalent to
Gaussian smoothing [[1]l, [15], [16]], [18]. The proposed G is
also convex in J, which simplifies the minimization.

We propose two models to regularize J in the space of
symmetric 2x2 matrices with eigenvalues larger than ¢, S? -
The first model introduces the constraint J(x) > € in the
minimization and solves it by pixel-wise projection into S? L

J, = argmin G (J) + §||J —J|%, st J(z) € S (13)
] :

The second model takes into account that also .J(z) € SZ,
and adapts the ¢y penalty in (I3) to the metric of Si.
To this purpose, we use the Lie-group structure of Si 4 to
define a data term that measures the geodesic distance in
Sf_ 4. This kind of regularization was originally proposed
for diffusion tensors in MRI [26], [27], but the resulting
models are computationally too expensive for large images.
To overcome this issue, [28|] develops log-Euclidean metrics
that approximates the metric of S%r . in the matrix-logarithm
domain. Log-Euclidean metrics are based on the observation
that the logarithm transforms elements of Si . into symmetric
matrices in S?, matrix exponentiation maps them back to Si 4
in a one-to-one mapping, and relative distance relations —
geodesic in Si 4 and Euclidean in S2— are preserved by this
transform. Consequently, regularization can be carried out in
the logarithm domain with Euclidean metrics, as follows:

log Ji, = argmin G (log J) + é|| logJ —log J||%,. (14)
log Jloge 2 ’

Defining the minimization variable to be log J, we solve (14)
as a standard vectorial regularization and recover the structure
tensor by pixel-wise matrix exponentiation, with the constraint
Je€ incorporated in Ji(z) = exp(maz(loge,log Ji(x))).
For details on log-Euclidean metrics and other approaches to
fast SDP regularization, we refer the reader to [28]], [29].



C. Enhanced Image Reconstruction

Given an estimate of the structure tensor, Jy, we reconstruct
an image by solving the following minimization problem:

up = argmin Ry, (u) + %HAU — flI3. (15)
In image denoising, A is the identity operator, in deblurring
A is the blurring kernel, and in compressive sensing A is the
sampling matrix.

In the case of image denoising, several methods emerge
as special cases of the proposed model: standard diffusion
corresponds to B = 0, v > [||[Vu®|||oe, TV corresponds to
B8 =0, v=0, and the anisotropic diffusion of Weickert [10]]
is obtained with 8 > 0, 11 > |||[VJ|||0e, 7 = 0.

III. EXTENSION TO NON-LOCAL OPERATORS

Non-local (NL) regularization has been recently introduced
in image processing to exploit the local self-similarity of
natural images to improve image reconstruction [_2], [30[]—[32].
To this purpose, NL techniques take into account multiple
instances of the same image structure and define the concept
of non-local derivatives. Research, however, is still limited to
NL equivalents of isotropic TV [2] and Dirichlet regularizers
[30], and non-local equivalents to the structure tensor have not
been investigated yet. This is the goal of this section.

In the study of this question, we consider the recovery model

) @
min Ro(u) + 5[ Au - f]3, (16)
where Rg(u) is a NL regularizer, like the NL-TV [2]] or the
NL-diffusion [30]]. Analogously to the local case, we adapt
Rg to each image by means of its NL structure tensor.

A. Non-Local Regularization

Non-local TV and Dirichlet regularizers are variational ex-
tensions of the NL-means filter [33]] for image denoising. They
come in both discrete and continuous flavors: in the continuous
setting, Gilboa and Osher [2] use graph theory to extended TV
to a non-local functional, while Zhou and Scholkopf [3[] and
Elmoataz et al. [34] use graph Laplacians to define discrete
NL operators. These operators have been used in denoising
[2]], segmentation [35]], [36]], inpainting [31]], deconvolution,
and compressive sensing [37]], [38]], but research is still open
to new models, not only to new applications.

Our NL method discretizes the continuous formulation of
[2] and considers the image as a graph G = (2, E'), where
Q is the set of nodes, one for each pixel in the image,
and F is the set of edges connecting the nodes. The edge
connecting nodes 7 and j is weighted by w(i,7), which
measures the distance between the two nodes in the metric
of the graph. Consequently, two pixels spatially far away in
the image domain can be neighbors in the graph and interact
if w(i, j) >0, which we write i ~ j.

Given an image u, the non-local gradient Vgu at node 7 is
defined as the vector of all directional derivatives associated
with the neighbors of 4, that is

Vau (i,5) = (u(f) —uw(@)Vw(i,j) Vj~i. (A7)

Vu is thus a vector field in €2 x 2 with components indexed
by the neighbors of each node. We are interested in sparse
graphs where each node is connected to a small number of
neighbors, and we can summarize the gradient Vu at node ¢
as a vector with v; effective components — the rest being null.

We can naturally define a dot product of vector fields by
simple analogy to the local case,

(d ’ e)G(Z) = Zd(%,])e(Z,]),

jei

(18)

Similarly, the inner product of functions and vector fields is
(u,v)g = Zu(z)v(z) (d,e)g = Z(d -e)g(i).
i€Q i
With the previous definitions, the magnitude of a vector field
at node 7 is given by

ldla(i) = V(d - d)a(i), (19)

Consequently, the NL-TV and Dirichlet functionals of [2[], [|39]]
can be written in terms of the Huber penalty, as follows:

1212,

Ra (U):/Qgé(vc:u), gg(z):{ e if |z|e<o

|zla—2 if |z]g>6

With these definitions, if we consider only the immediate
pixels as neighbors with unit weights, R reduces to the finite-
difference discretizations of R. By considering more general
neighborhoods, V¢ incorporates global information and the
regularization is improved. For this reason, we follow [33]
and define the weighting function by measuring the difference
between 5 X 5 patches around each node, that is,

1P (i) —Po (4) 113

U/(Z, ]) = eXp_ 22 9 (20)

where h is a scaling factor, and Py(¢) is an image patch of
ug centered at pixel ¢. This weighting function is designed to
reduce Gaussian noise while preserving image textures.

With these weights, V¢ is already adapted to the structure
of the image and reconstruction with R exploits similarities
between patches. Our NL regularizer goes a step further and
exploits the similarity of the image within the patch neighbors.

B. Non-Local Adaptive Image Reconstruction

Mimicking Section [IIf we can derive a two-step NL recon-
struction method. To compute the graph weights, the method
is initialized with the reconstruction model (T)).

In the first step of each iteration, we estimate the NL struc-
ture tensor of the image, Jg, and define an adaptive regularizer
R .. In the second step, we reconstruct an image with the
proposed regularizer R j, by solving a convex minimization
problem. Iterating the process, we obtain our NL method:

Jag, ¢ estimate NL structure tensor from uy_;

) «
up = argmin Ry, (u) + EHAU - f”%

We initialize ug to the solution of its local model for the weight
computation (20). The next sections detail each of these steps.



C. Non-Local Adaptive Regularization

By analogy with the local case, we consider a NL
anisotropic regularizer defined by a diffusion tensor T:

Ricw) = g5(SaVeau), Sa(i)=/Tali), (@1)
i€Q

where T (i) can be effectively reduced to a tensor in SY' by
only considering the components of Vgu associated to the
neighbors of node i, that is, Vgu(i) = Vgu(i,-) € R”. In
what follows, we consider this compact notation.

The diffusion PDE of comes from its formulation in
the continuous framework [2], where it is easy to show that
its descent flow leads to the anisotropic diffusion

ou 1 -

o _ T T~ = Tc.
N IVG( GVGU)7 G max(5,|SGVGU|) ¢

The diffusion tensor Tz can again be defined as a function of
the NL structure tensor of the image.

Let Jg(i) € S7i be the estimated structure tensor of the
image at node 4, and Jg(i) = Qg (i)Ac(i)QL(4) its eigen-
decomposition. As in the local case, we define the diffu-
sion tensor with the same orientation as Jg(i) and positive
eigenvalues Aal(i). This tensor can theq be decomposed as
T (i) = SE(i)Se(i), with Sg(i) = Ag?(1)Q% (i) a change
of coordinates that redresses the ellipsoid defined by the NL
structure tensor into a sphere.

Finally, we define Te(i) = max(6,|SqVau|(i))Te(i)
in the same manner than Section [, and our adaptive NL
regularizer as follows:

Ruw) = g5(S6Veu), So=max(v3, VArAs) Ag* Q.

1€Q

D. Robust Estimation of the Non-Local Structure Tensor

Each iteration the NL structure tensor is estimated in two
steps. We first obtain a noisy point-wise estimate J from the
image ux—1, and we then regularize it to obtain Jg, .

As in the local setting, J is defined by the outer product of
image gradients, as follows:

Ja(i) = Vgu(i,) ® Vgu(i,-) where Jg(i) € SVi. (22)

Je is computed directly in terms of NL derivatives and is
very sensitive to noise. To overcome this issue, we regularize
it with a technique adapted to the NL structure tensor. As in
any regularization model, we have a data and a smoothness
term, but the smoothness term requires careful consideration.

The difficulty comes from the lack of global correspondence
between components of Jg and spatial directions in {2 that
is inherited from the NL gradient. Indeed, the direction of
Vu(i, ) depends on the relative position of nodes ¢ and j in
the image domain and is not coherent for all the pixels. Con-
sequently, we cannot compare the value of the NL structure
tensor in terms of its components, and regularization based on
component-wise differential operators is meaningless. There
is no reason, however, not to combine a data term on jG with
a smoothness term on a scalar function of Jg.

We consider log-Euclidean metrics in the positive semi-
definite cone for both the data and the smoothness terms. This
results in the following minimization in variable Lg = logJg

. B NP
min Y g,(Vov) + 5[ La(@)—La()F,  (23)
Lg 4 2
’U:tr[iszg] i€

where tr[-] is the trace operator, Lo = log(Jg), and v is an
affine approximation of the Frobenius norm of L, that is,

ILa(i)|F = tr[La(i) La(i)] = tr[La(i)La(i)].  (24)

This approximation is introduced to make the minimization
convex and the numerical algorithms fast. After minimization,
the structure tensor is recovered by matrix exponentiation.

E. Enhanced Non-Local Image Reconstruction

Given the proposed regularizer R, Wwe reconstruct the
image by solving the following minimization problem:

: a
up = argmin R, (u) + §\|Au — flI3. (25)

IV. NUMERICAL MINIMIZATION

To efficiently solve the minimization problems (13) and
(13), we re-formulate them as constraint minimizations with
independent variables for each term, form the associated
Lagrangians, and solve the resulting saddle-point problems
with a primal-dual algorithm. To simplify notation, we remove
the k subindexes in uy and Jj that indicate the iterations.

The minimizations and involve a quadratic term
and a regularizer similar to the ROF model [6]. Consequently,
our algorithms apply a strategy to overcome the dependency
on derivatives and the non-linearity in R; similar to the
multitude of algorithms for this model. The first algorithms
for the ROF model [6] solved the minimization by explicit
evolution of its descent-flow PDE, this lead to slow algorithms
with time steps limited by Courant-Friedrichs-Lewy stability
conditions [40]. To overcome this limitation, techniques based
on variable splitting and constrained optimization have been
recently introduced, and directly adopted for the minimization
of NL-TV functionals [38]], [41]].

A popular class of methods is based on the dual formu-
lations of ROF, like Chambolle’s projection method [42], or
the primal-dual approaches [43[]-[45]. Other options are based
on variable-splitting and constrained optimization [46[; which
is solved by quadratic-penalties [47]], Bregman iterations [48]],
[49], or augmented Lagrangians [50]. The relations between
these different methods are explained in [51] . Among them,
we choose the primal-dual approach of [45] because it leads
to minimization problems with closed-form solutions compu-
tationally cheaper to compute than the splitting methods [47],
[48]], [50] and it can be easily accelerated by adapting its time
steps o, T to guarantee an optimal rate of convergence.

A. Discretization and Notation

In the numerical minimization, we discretize €2 with a
regular grid of size n = n, xn, and describe functions in
Q by the values taken at each sample point (pixel), that is,



u € R™ describes a function in 2 with u(4) value at pixel i.
Vector or matrix fields with k£ components are then rasterized
in the same manner into vectors in R"*.

We use forward differences to compute the discrete gradi-
ents and backward differences for the divergence to preserve
the adjoint relationship div = —V*. With vector notation,
we can efficiently compute the spatial derivatives multiplying
the discrete functions with sparse finite difference matrices.
As the NL gradient is also a linear operator, the same vector
notation allows us to compute Vgu by multiplication with a
sparse matrix Dgu that is defined by the NL neighboors and
their weights. We summarize both algorithms by considering
the discretization of the spatial derivatives as a particular case
of the NL differential operators —with unit weights and NL
neighbors defined by finite-difference approximations.

Finally, |- | denotes the magnitude of a vector field defined
in the image domain 2 (| - |¢ in the NL case), while || - ||2
is the /5 norm in its Hilbert space. The dot product of vector
fields is denoted by w1 -v2, while its inner product is {u1,usg).

B. Reconstruction with Adaptive Regularizer

To reconstruct the image we need to solve the problem

min [l Au— 3+ Y g, (S[i] Voulil).

i=1

(26)

Our algorithm exploits the convexity of each of the terms in
(26) to re-formulate it as a saddle-point problem that is easy
to solve in the primal and dual variables independently.

To this purpose, we let F(d) = Y7, g,(d()) and re-write
(26) as the constrained minimization

min %HAu— fIZ+F(d) st. d=Ku  (27)

where K is a linear operator that combines the gradient
with the pixel-dependent linear transform S, i.e., Ku(i) =
S(#)Vu(3) for local and Ku(i) = Sg(i)Vgu(i) for NL case.

The Lagrangian L(y) of is obtained by introducing a
dual variable y for the constraint d = Ku and making use of
the convex conjugate F*(y) = sup, (y,d) — F(d) to obtain:

Lly) = min Tl Au— f3 ~ F*(y) + (y, Ku).

Finally, convex analysis tells us that the minimization of
is equivalent to the saddle-point problem

o

min max 5||Au— fl5 = F*(y) + (y, Ku). (28)
uoy

We solve this problem with the primal-dual algorithm of

Chambolle-Pock [45]] by solving a sequence of minimization

problems in u and y independently. In our case, these read:

. « 1
Y = argmin oF"(y) + Sy — ' — o K2
Y

u!t = arg min Ta||Au — fH% + |lu— ut 4+ TK*yt+1||§
u
A= gttt — ),

As the problem is uniformly convex, this algorithm can be
further accelerated by updating parameters o, 7 (Alg. 2 [43]).
Another acceleration for Lipschitz functions is given by [52].

The efficiency of the proposed algorithm comes from the
ability to find closed-form solutions for each of the sub-
minimization problems. The derivation of these solutions is
detailed next and the procedure summarized in Algorithm [I]

Initialize u,y, z to 0.
Choose 7,0 >0, 6 € [0, 1].
while |[u!T! —ul|| > 17* do

t+1/7:\ Yy ~ t t
Yy 0) = smmiermon: 9=y toke
uttt = ol o =u'— TK*y'!
Sl — gt 9(ut+1 - ut)

Algorithm 1: Efficient minimization associated to recon-
struction model for image denoising.

If we define & = u' — 7K*y'*!, the minimization in u is
discretized as the least-squares problem
. TO 9 1 2
min —||Au — f||5 + =|ju — 4|3 (29)
w2 2

Its optimality conditions lead to the following linear system,
with positive definite matrix:

(taATA+ L)u=0b withb=1a+aATf.  (30)
While in image denoising A= 1I,, and the solution u= Il‘j_'f(f

does not require any matrix inversion, in deblurring and com-
pressed sensing, we need efficient ways to invert Ta AT A+1,,.

In image deblurring, Au denotes the convolution of the
image v with a Gaussian kernel k. This operation can be com-
puted efficiently in the frequency domain by point-wise multi-
plication of their Fourier transforms, and the result recovered
by the inverse Fourier transform F —1, that is: Au = F _1‘7,
with V(i) = K(i)U(i) and K, U the 2-dimensional discrete
Fourier transforms of £ and w. In compressive sensing, the
measurements f are random samples in the Fourier domain,
and the matrix A = RJF decomposes into a binary mask
R and the discrete Fourier transform F [53]. In both cases,
(TaAT A+1,,)u can be written as an entry-wise multiplication
in the Fourier domain equivalent to a diagonal linear system
DU = F[b] trivial to invert, with matrix D, given by
the Fourier decomposition of (raATA + I,). In terms of
implementation, the FFT gives a fast and exact O(nlogn)
algorithm to perform discrete Fourier transforms.

To solve the minimization in y, we use Moreau’s identity
[51] to rewrite the minimization in terms of F'. This gives

* . * 1 ~ ~ *
y" —argmin oF"(y) + 5lly - 93 < y* =9 - od
Yy

with d* = argming F(d)+%|d— g |3. As the minimization
in d is decoupled for each pixel, it simplifies to

d*(i) = argmin g¢,(d(i)) + g @

d(i)

d(i) — 31)

o |

and we only have to minimize g, (v)+ v — 2|2 in v € R2.
For v > 0, the Huber penalty is differentiable and the
optimality condition of (3I)) is obtained by imposing zero first



derivatives in v, that is,
d() N
— (i) =0

max(y, [d0)]) )

With some algebraic manipulation, we obtain its solution

+ od(i) — 32)

L9061 (i)
d(i) = o omax(|g(i)|,1+o7)’ (33)
and update the dual variable:
MpE— G4

max(|g(i)[, 1 + m)

For 7 = 0, g,(v) =
known non-differentiable problem solved with shrinkage by

N 9(i) 4(0)
(i) = - max (|9)] = 1,0) 5 = y(i) =
The only difference between the local and NL versions is in
the minimization problem in d. However, as it is decoupled
for each pixel, we obtain the same closed-form solutions for
the local and NL case if we simply allow the size of d(¢)
to change with the number of NL neighbours of each node.
Putting together the different updates we get Algorithm

C. Regularization of the Structure Tensor

Section presents two models to regularize the estimated
structure tensor J. We detail here the algorithm for (13) as it
can handle (T4) by omitting the projection onto S? L.

To regularize the structure tensor with (I3, we solve

- B
mJin Zg#(VJ(i)) + 5||J —J|5g st J(z) €S, (35)
i=1
We use the same strategy to solve this minimization: we
reformulate it as a constrained optimization and solve the
associated saddle-point problem with algorithm [45] finding
closed-form solutions for each sub-minimization.
The equivalent constrained minimization is

min /9,1(1\4)+§||J—j||fm72 st. M =VJ, J(z) €Sz,
: Q

and with G(M)=>""_,9,(M(i)) the saddle-point problem is

: B 5
min  max §||J — JH%2 - (36)

J(x)es?,

G*(Y) + (Y, V.J).

The primal-dual algorithm [45]] then solves the sub-problems

1
yitl = arg min oG*(Y) 4+ *HY -Y' - UthHQF,Z

J = arg min —HJ J||F2

J(x)es?,
The minimization in J can be written as follows:

T8 + 1 TBJ — Jt + TVrYtt!
T8+1
The problem is decoupled for each pixel, and it is solved by

pixel-wise projecting .J onto the cone S? . This projection is
accomplished by computing the eigenvector decomposition of

min J—J . J=
min, T s

- max(L,[§(3)])’

1 X
5||J — J' VY 5,

the matrix J=QAQ” and setting to € any eigenvalues below
this value, that is, J = Q max(A,e)QT. As Jisa 2 x 2
symmetric matrix, we have closed-form expressions for its
eigendecomposition with computational cost of O(n).

We use again Moreau’s identity to substitute the minimiza-
tion in Y by the following minimization in M:

M* =argmin G(M) + gHM - X||2F2 37
M 2 g ’
. 2
M* = argmin > g, (M(i)) + 2 || M(i) - @ . (38)
M ,
i F

As the minimization is decoupled for each pixel, we only need
to minimize pixel-wise g, (v) + |lv — Y(l) ||F in v e R?*4,
This function has the same form of ( and closed-form
solution. The final procedure is summarized in Algorithm [2]

Initialize J° = .J, Y° =0, Z° = JO.
Choose 7,0 > 0, § € [0,1].
while |7t — Jt|| > 17 do

t+1 Y (i) o
Y& = aaimaiazen © =

JENE) = QU)max(A(i), 0QT()

(Q.A] = eig(TEELEET
JHL L o(JtH — gt
Algorithm 2: Efficient minimization associated to the es-
timation of the structure tensor (33). J(i), Y (i) are the
values of the tensor fields J and Y at pixel 7.

Yt —oVZ?

Zt+1 —

D. Regularization of the NL Structure Tensor
To regularize the NL structure tensor, we solve

. B , .

min Z 90(Vev) + S La(@)—La()F  (39)
La ; 2

’U:tr[LgLG] i€

by re-formulating it as the constrained minimization
. B 5
IrLlln Fg(pG) + §HLG — LGH%‘Q S.t. pg = PgLqa, (40)
G

where Pg is the linear operator that combines VG with the
node constraint on v, i.e., Pg Lg(i) = VG tr[ La (i) La(i)].

Problem (@0) has the same form as (27) if we substitute the
linear operator K by Py and A = Id. By incorporating these
changes into Algorithm [T} we obtain Algorithm

Initialize L2, = 2° = log Jg, 4 =0, 7,0 > 0, €0, 1]
while ||[L5! — LL|| > 17* do
v (i) = maw(lfffu \z);Gle)» 9c =yo +obe?
L ()—T1PkL +BL 7
LtG“(z)z G()— Gf{rr () +BLc (1)
ZtJrl — Lg‘rl +6(L1’+1 Lt )

Algorithm 3: Efficient minimization of (23).

V. NUMERICAL EXPERIMENTS

We present both quantitative and qualitative results on image
denoising, deblurring, and compressed-sensing reconstruction.



In denoising we add Gaussian noise to the images to define
our measurements f; in deblurring f is the convolution of
the original image with a Gaussian kernel of size o; while in
compressed sensing f are m Fourier measurements radially
sampled in the frequency domain.

We compare our local method to classic TV regularization,
as our technique can be considered as a generalization of it.
To compare our model to anisotropic diffusion based on the
structure tensor, we use the anisotropic regularizer recently
proposed by [[18]]. We choose this anisotropic method because
it is defined in a regularization framework comparable to ours,
relies also on convex techniques to solve the minimization
problem, and outperforms state-of-the-art regularization meth-
ods [18]]. The parameters of each model (« for TV, a and
the size of the Gaussian kernel in [18]]), and «, 3, ~y, u for our
model) have been optimized manually for the best peak SNR,
which is the metric used in our evaluation.

For the non-local method, we compare its performance to
BM3D [54] and non-local TV of [55]], where the weights of
the NL regularizers are computed from the reconstructions ob-
tained with the respective local versions. Both methods are the
state-of-the-art in non-local techniques: BM3D outperformis
in image denoising but has restricted applications, while NL
TV offers a general framework comparable to our method.
Due to its formulation, BM3D can only be applied to image
denoising — and to some extend to deblurring — and we restrict
our comparison to this application; this is in fact the main
drawback of BM3D compared to our regularization, which
can be applied to any inverse problem.

A. Results

We present our results in Figures and Tables and
we analyze them by answering several questions.

1) Isotropic vs Anisotropic Regularization: The main dif-
ference between our model and classic TV and Dirichlet reg-
ularizers lies in its anisotropy. Anisotropy is also a feature of
natural images, both of highly oriented images like fingerprints
and of textured images like Barbara; this results in an im-
proved performance of our regularizer in comparison to classic
TV: 0.55 dB in average for denoising, 0.8 dB for deblurring,
and 1.4 dB for CS reconstruction. Our experiments show that
all the images benefit from the use of an adaptive regularizer,
with the improvement is limited to textured images.

2) Effects of non-differentiability in Rj;: Compared to
regularizers based on ¢; penalties, like TV or [18]], our model
allows for classic diffusion when the image variation is small
by the use of the robust Huber norm. This eliminates the
staircase effect associated with ¢;-minimization models that
characterizes total variation. Such an effect is visible in Lena’s
shoulder or the sky of boat and castle images.

3) Robust Estimation of Structure Tensor: Another point
that differentiates our model from regularization schemes
based on the structure tensor is the estimation of this tensor.
While [[1]l, [T5]l, [16], [18] use Gaussian smoothing of (3) to
locally average the components of this tensor, our averaging
takes into account the local structure of the image, by for-
mulating the estimation as a tensor denoising problem, and

the nature of the tensor measurements by the use of log-
Euclidean metrics. While the benefits of log-Euclidean metrics
depend on the application (it improves reconstruction for
image deblurring, but degrades for denosing and compressed
sensing), our estimation of the structure tensor as an SDP
optimization is beneficial: an average gain of 0.85 dB over
[18]] in compressed sensing, 0.5 in deblurring, and 0.06 in
denoising. Our model is in fact more robust for more ill-posed
problems, always outperforming TV and [18] in compressed
sensing and deblurring, while being comparable to it [[18] in
denoising for high levels of noise.

4) Local vs Non-Local Method: Figures compare our
local and non-local regularizers and shows how non-local
regularization visually improves image reconstruction in com-
pressed sensing, not only for textured images. This improve-
ment does not extend to the other applications.

5) Use of geometry in non-local methods: Compared to
non-local regularizes, our model improves signal reconstruc-
tion by exploiting the geometric information of the non-local
graph. While non-local TV defines an isotropic regularizer in
the graph of image patches, our non-local model is associated
with an anisotropic diffusion operator that exploits the geom-
etry of the image in the non-local graph. As in the local case,
our anisotropic model outperforms its isotropic counterpart,
the NL TV of [55], in all the denoising, deblurring, and
compressed-sensing experiments.

For image denoising we also compare our model to BM3D
[54f], where multiple image patches collaboratively denoise
each image pixel. Although BM3D outperforms the rest of
techniques for image denoising, its formulation does not gen-
eralize to linear inverse problems. Our regularizer substitutes
NL TV in any variational model and is therefore more general.

B. Discussion and Limitations

Our model relies on the structure tensor to estimate the
image geometry and improve regularization, as a result, it
only outperforms traditional TV if the structure tensor can
be reliably estimated from u°. For this reason, as the data
is degraded — by increasing additive noise in denoising,
increasing the size of the blurring kernel in deblurring, or re-
ducing the measurements in compressed sensing— the relative
performance of our approach degrades. An example of this
behavior appears in Table [[] for denoising, where our model
and [[18] become comparable as the noise level increases.

The limitation of the NL method stems from the size of
variables derived from differential operator and the accuracy of
the weights that define the NL graph. Indeed, as NL methods
define a gradient vector with as many components as NL
neighbors, Vu(i) has v; components for each pixel and its
associated structure tensor I/Z; with v; in the range 5 — 9
and 10* — 10° pixels per image, the proposed NL method
has large memory requirements. The second limitation stems
from the dependency of the NL weights on the unknown
image, that we overcome by computing the weights from an
approximate image estimate. In our experiments, this strategy
is very successful for CS, where our NL technique outperforms
the local one, but partially fails in image deblurring and



denoising, where our NL technique outperforms NL TV but
fails to improve our local reconstruction. This is a general
limitation of the NL regularization framework of [3]], [55]).
In terms of computation, our local method is in average 3-
5 times slower than TV regularization and 3-4 times slower
than [18]], with performance depending on the application
and experimental setting. The non-local version is 6-8 times
slower than NL-TV, with 70-80% of the time dedicated to the
estimation of the high-dimensional NL structure tensor.

(b) TV reconstrucion

(h) our local method

(g) anisotropic regularizer (18] ) )
Fig. 1: Image denosing with noise level o,, = 0.05.

VI. CONCLUSIONS

We propose an adaptive regularizer for image reconstruction
inspired by classic diffusion PDEs. The new regularizer adapts

(a) noisy image o, = 0.05 (b) TV reconstruction

(d) our local method

(h) our local method
Fig. 2: Image denosing with noise level o,, = 0.05 — 0.075.

(g) anisotropic regularizer

to the geometry of each image and naturally extends to non-
local operators for texture recovery. Compared to diffusion
PDEs, our variational formulation is able to reconstruct non-
smooth images and allows for modern optimization tech-
niques. In particular, we develop efficient algorithms for image
denoising, deblurring, and compressed-sensing reconstruction
by solving a sequence of proximal convex problems with
analytical closed-form solutions. Our experiments show a
consistent gain in accuracy over classic regularization in both
local and non-local settings.
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(e) NL TV reconstruction

(f) our NL method

Fig. 4. Compressed-sensing with 18% of Fourier samples.

o noise 5% 7.5% 10%

55] ours| 55] ours| 55] ours|
lena 17.5117.71/18.62|15.27 15.50(16.15|13.74 14.04|14.74
barbara 17.82 18.02(18.87|15.47 15.69/16.51|13.74 13.91|14.94
castle  17.96 18.12(19.36|15.72 15.75(16.94|14.17 13.90|15.35
finger 13.0613.12|13.40{10.3910.53/11.00| 8.58 8.77| 9.42
baboon 13.5213.66(14.16/11.2411.41{11.93| 9.72 9.88|10.40
monarch 13.82 14.06(14.92{11.21 11.50{12.26| 9.39 9.70(10.42

TABLE IV: Peak SNR in denoising with Gaussian noise. The
first two columns compare our NL method to NL-TV [55], the
last column show the results from BM3D. Our NL method
outperforms the general NL variational regularizer [53]], but
does worse than the denoising-specific technique BM3D 43_2]]
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(k) NL TV reconstruction (1) our NL method
Fig. 5: Reconstruction from 18% of Fourier samples.



(a) noisy image oy, = 0.075

(b) TV reconstruction

(c) anisotropic regularizer
Fig. 3: Image denosing with noise level o,, = 0.075.

o noise 5% 7.5% 10%

TV || ours logEl TV || ours logEl TV || ours logE
lena 16.84 17.4617.99 15.13(14.48 15.11 15.58 12.06(13.02 13.62 13.89 10.61
barbara  17.09 17.77 18.01 15.26(14.77 15.44 15.61 12.24]13.13 13.80 13.84 10.50
castle 17.90 18.34 18.43 16.88|15.65 16.10 16.09 13.82|14.15 14.56 14.46 12.02
boat 15.14 15.52 15.60 13.62(12.84 13.2313.26 11.09{11.5211.82 11.83 9.16
fingerprint 12.24 12.46 12.58 11.99| 9.23 9.54 9.71 9.14| 7.31 7.67 7.85 7.25
baboon  13.5213.7713.77 12.72|11.2311.5511.4310.02| 9.7610.04 991 8.11
monarch 13.7113.98 14.33 13.10{11.01 11.3511.65 10.12| 9.19 9.52 9.72 7.88

13

(d) our local method

TABLE I: Denoising experiments with different levels of Gaussian noise o. The first two columns show the peak SNR of TV and
the anisotropic regularizer of @], the last two our model with Euclidean (ours) or log-Euclidean (logE) metrics.

blurr =1 oc=1.5 oc=2
local methods  |NL methods| local methods |NL methods| local methods |NL methods
TV our logE NL our| TV our logE NL our| TV our logE NL our
lena 6.50690 7.76 8.47|6.56 6.82(6.426.88 7.52 7.84/6.54 6.86/6.336.796.79 7.25/6.59  6.83
barbara |6.887.30 8.58 9.34(7.10  7.26/6.907.33 8.30 8.64|7.12  7.29/6.847.287.73 7.90/7.12 7.13
castle 9.379.6210.5211.08/9.19  9.259.409.6310.2310.41/9.32  9.43/9.349.599.77 9.81{9.36  9.36
boat 6.386.69 7.62 8.406.52 6.78|6.346.69 7.28 7.66/6.48  6.756.28 6.646.93 7.05/6.40  6.62
fingerprint|2.552.58 2.85 3.10[2.52  2.54|2.552.59 2.71 2.742.55  2.58)2.542.582.59 2.58|2.56  2.56
baboon |6.086.25 7.21 7.72(6.03  6.26/6.056.21 6.85 7.04/6.02  6.25/6.006.146.39 6.44|5.99  6.11
monarch |3.753.91 4.80 5.56/3.92 4.12(3.683.84 4.18 4.45|3.82  3.97/3.573.753.59 3.67|3.67 3.60

TABLE II: Peak SNR in deblurring with Gaussian kernels of width o. The first four columns compare our local method — with
Euclidean and log-Euclidean (logE) metrics — to TV and the anisotropic regularizer of [18], the last two columns compare our NL
model to NL TV @] Our local method outperforms TV and @], while our NL technique outperforms TV and NL TV.

m/n 12% 18% 24%
local methods NL methods local methods NL methods local methods NL methods
TV [18] our logE NL our| TV [18] our logE NL our| TV [18] our logE NL our
lena 10.3210.80 11.47 11.54{10.73 11.84|/15.97 17.1519.00 17.09{17.40 19.11{20.13 21.78 23.25 20.26|22.15 23.07
barbara {10.12 10.6211.78 11.55/10.50 11.92((15.4216.58 18.02 17.04{16.85 18.51|19.57 21.44 22.64 20.47|21.52 22.80
castle 12.1912.4712.66 12.0512.27 12.58||16.61 17.08 18.30 16.75(17.30 18.28(19.8220.51 21.57 19.65|20.97 21.79
boat 8.69 9.06 9.35 9.17| 949 9.50(/13.1213.7814.56 13.51|{13.91 14.80(16.3217.1018.24 16.37|17.16 18.04
fingerprint| 2.75 3.05 3.06 3.05| 2.94 3.16| 3.83 4.30 4.38 4.44| 4.18 5.20| 5.17 5.81 5.86 6.78 593 7.99
baboon 6.78 7.00 7.11 7.17| 6.86 7.26| 9.9110.4010.3710.47|/10.12 10.64(11.6412.2112.1212.11{11.92 12.33
monarch | 4.66 5.01 5.37 5.34| 494 5.67| 9.9210.3312.57 10.54{10.68 12.66(14.3915.1117.49 14.63|15.55 17.03

TABLE III: Peak SNR in compressed-sensing reconstruction with sampling ratio m/n. The first four columns compare our local
method — with Euclidean and log-Euclidean (logE) metrics — to TV and the anisotropic regularizer of [18], the last two columns
compare our NL model to NL TV [2]]. Our local method outperforms TV and [I18], while our NL technique obtains the best overall
performance from both local and NL methods.
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