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Abstract

Active appearance models (AAMs) provide a framework
for modeling the joint shape and texture of an image. An
AAM is a compact representation of both factors in a con-
ditionally linear model. However, the standard AAM frame-
work does not handle images which have missing features,
or allow modification of certain structures in the image
while leaving neighboring ones undeformed. We introduce
the layered active appearance model (LAAM), which al-
lows for missing features, occlusion, substantial spatial re-
arrangement of features, and which provides a more general
representation that extends the applicability of the Active
Appearance Model.

1. Introduction

Active appearance models [6] and related statistical
models of shape and texture have received a great deal of at-
tention in recent years. In the traditional AAM framework,
the model is constructed from a collection of input images
and corresponding landmark points (typically hand-labeled,
although see [10, 4] and references therein for recent ex-
tensions that allow automatic registration) on each image.
These landmark points correspond to important shared “fea-
tures”, such as the eyes, nose, and mouth in a model of
faces. The mean position of these landmarks is found, and
all input images are warped to bring corresponding land-
marks into identical positions. The resulting “shape-free”
images are then processed using principal component anal-
ysis (PCA). Since the relevant features of the shape-free
images are in correspondence, the model produced in this
manner is superior to one generated without the initial warp-
ing step. PCA is also applied to the shape parameters (the
positions of the landmark points), and the results for both
shape and texture are combined in a single model through a
final PCA step.
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Figure 1. Examples of images which cannot be mod-
eled by a standard AAM due to non-diffeomorphic
warps or missing features. In (a) the license plate par-
tially overlaps the grill; in (b) the license plate is com-
pletely inside the grill; in (c) it is completely absent.

This framework yields good results when applied to im-
ages such as faces. In such settings, the warps involved are
relatively small and do not move one feature into or across
another. More importantly, all features are present in all
images. We wish to emphasize the distinction between fea-
tures and landmarks — although a particular landmark, or
set of landmarks, may be absent or occluded [9], it is gen-
erally assumed that all objects in all images have the same
parts. 1

However, other classes of objects, such as cars, are
not handled well by the standard active appearance model.
Some instances of such objects may not have all possible
features. It is not that they are occluded — they simply

1In this discussion, “features”, “parts”, and “layers” are used informally
and interchangeably, and are distinct from the very specific meaning of
“landmarks” [2] (two-dimensional points which define salient feature lo-
cations).



do not exist, and the surrounding region continues into the
space occupied by that particular feature. A standard AAM
has no way to model this. Others may have features with
strong position changes, such as a license plate that is out-
side of, partially overlaps, or is completely inside a grill
(fig. 1). Such position changes make it impossible to bring
features into correspondence through a diffeomorphism, so
the AAM fails. Even if all features are present, and a diffeo-
morphism is sufficient to model the movement of features,
performance of the standard AAM tends to be very poor
when landmarks undergo large position changes.

We propose the layered active appearance model
(LAAM) to address these shortcomings. In a LAAM, each
feature is considered a layer, which may or may not be
present in a particular instance of the object. Each layer
has a position, which is an additional parameter for the
model, treated similarly to shape and texture, and the po-
sition of landmarks within a particular layer are relative to
that layer’s reference frame. Layers occlude each other, but
are considered to be defined everywhere within their par-
ticular domain. The resulting model-building problem with
missing data (due to both occlusion and missing features) is
solved using an Expectation-Maximization (EM) [8] algo-
rithm.

1.1. Previous Work

Many variations on the active appearance model have
been developed [3]. The most relevant are those which
were proposed to deal with occlusion, typically due to view-
point change. In [5], Cootes et. al introduced a model
composed of multiple distinct AAMs, where occluded land-
marks due to pose change do not appear in some models,
and the appropriate model is selected based on pose. A sim-
ilar technique could be applied to our problem in the case
where some features are absent, essentially defining sepa-
rate subclasses of objects, which are described by a differ-
ent model. The layered active appearance model provides
a richer framework, in which all information is available in
a single model, and objects do not have to be separated by
subclass. Furthermore, there is a natural hierarchy in layer
structures, which allows for the automatic inpainting [1] of
lower regions when upper regions are removed.

More recently, Gross et. al proposed [9] a single-model
solution to the problem of occlusion. Their approach to
building the model using PCA with missing data is simi-
lar to ours, but they still assume that all objects do have
the same features, some of which are just not visible in
the images. The single model does incorporate all available
data. In contrast to the multiple model approach mentioned
above, there is no concept of object subclasses or variability
in which features an object actually has, meaning the model
does not describe objects where the features are not sup-

posed to be there. Also, neither approach mentioned here
addresses the problems of AAMs with large shape changes
or violations of the diffeomorphic constraint.

2. Model Construction

We begin with a training set of images I , labeled with
a given set of landmarks S on each object in the set. Al-
though extensions to automatic registration and segmenta-
tion of regions are conceivable, these are well beyond the
scope of this paper and will not be addressed. Instead, we
assume that landmark points are divided into G groups, and
each group determines (via convex closure or interpolation)
a compact region of the image Ω, corresponding to various
“features”. We construct a set of layers, Φ, where each layer
is associated with one feature, and in particular with the
landmarks Sφ, the compact region of 2-D space Ωφ which
they identify, the intensity image or “texture” Tφ defined on
the domain Ωφ, and a local coordinate system with origin at
Xφ.

The ordering of layers is fixed, so feature φ1 is always
in front of (and may occlude) feature φ2 and so on. If
features are missing from a particular example, or if land-
marks, pixels, or entire features are occluded in an image,
we record that information in weight vectors with entries
for every component of S, X , and T . We denote the corre-
sponding weights as WS , WX , and WT , respectively. (In
this work, we simply enter a 1 to indicate the presence of a
quantity and 0 to indicate its absence. As the weighted PCA
method we describe is valid for completely general weights,
one can imagine more interesting weighting schemes, indi-
cating uncertainty given missing or inaccurate labels, noisy
images, transparency, or weights generated by an automatic
outlier detection scheme [7].) Thus, each layer has a posi-
tion, shape, texture, and weights. Since each layer occludes
those behind it, we know we will have zero weights at least
for the pixels in areas of a layer hidden by another. Figure 2
shows the layers for the car model developed in section 3.

2.1. Warping, Normalization, and Weighting

The first few steps of model construction follow the stan-
dard AAM formulation closely; the major difference is that
most operations are done on each layer separately rather
than for the entire labeled image. First, we find the mean
shape for each layer:

S̄φ =

∑
I WS

i,φSi,φ∑
I WS

i,φ

. (1)

Then, for each image i and layer φ, we generate a warp-
ing for the domain Ωi,φ → Ω̃i,φ such that S̃i,φ = S̄φ; that
is, we warp each layer to the mean shape for that layer. T



Figure 2. The layers of an example from the car
LAAM developed in sec. 3. For comparison, the orig-
inal image is shown first. Note the missing data from
the lower grill where it is overlapped by the license
plate, and from the body of the car where all other
parts occlude it.

and WT are defined on the domain Ω, so are both warped
in this step. Since our warps are generally defined by only
the boundary landmarks and not internal points, we have
more freedom than in standard AAMs to choose the warp-
ing method. Although we employ a simple triangulation
scheme here, techniques such as thin plate splines [2] would
be much more useful in a LAAM than a standard AAM.
At the same time, it remains possible within the LAAM to
define additional, internal landmarks to anchor a particular
“sub-feature”, in which case triangulation may yield supe-
rior results.

After warping, the texture data for each layer is intensity-
normalized to minimize the effects of lighting and color
variation. We correct the median to the median of the layer
amongst all images. Note that this is done on a layer-by-
layer basis, not for entire images at a time. Thus, we are
able to correct for different layers varying in intensity rel-
ative to each other in a single image. This is useful, for
example, when we want to normalize dark and light cars,
and both already have the same colored headlights.

Before we can build a combined model of shape and ap-
pearance, we need to define another set of weights which
will compensate for the differing effects of shape, texture,
and position on images generated by the model. Various ap-
proaches have been used for this step in the AAM literature;
Cootes et. al. [6] originally proposed varying the shape pa-
rameters and measuring the RMS change of the generated
images. This is laborious and is probably not as robust as
we desire since it involves image derivatives. We have iden-
tified a simpler technique that works well by comparing the

variances of each parameter type amongst the entire train-
ing set. Intuitively, weighting with the variances as follows
approximately equalizes the dynamic range of the differing
data types, giving them equitable influence on the result.

WTS =
var(TWT )
var(SWS)

,WTX =
var(TWT )
var(XWX)

. (2)

One nice benefit of our weighted PCA approach is that we
can combine theses weights with the weight vectors we al-
ready use rather than having to combine them into the data
itself only to factor it out later. Finally, we form vectors A
and W :

Ai =



Si,φ1

...
Si,φG

T̃i,φ1

...
T̃i,φG

Xi,φ1

...
Xi,φG


,Wi =



WTSWS
i,φ1

...
WTSWS

i,φG

W̃T
i,φ1
...

W̃T
i,φG

WTXWX
i,φ1

...
WTXWX

i,φG


, (3)

where T̃ corresponds to the warped and normalized texture
data and W̃T indicates the warped texture weights.

2.2. Weighted PCA

At this point, the typical active appearance model builder
would apply principal component analysis to the combined
shape and appearance vectors for all images in the train-
ing set. We need to do the same thing, but since we have
no information for occluded areas of the images, we have
to solve a PCA problem with missing data. We present an
expectation-maximization [8] (E-M) based approach, fol-
lowing the lines of Roweis [11], but with inspiration from
Skocaj and Leonardis [12]. (There are other approaches to
PCA with missing data; any could be used in our frame-
work.) We summarize the process here; the reader is re-
ferred to the original papers for a detailed derivation. For
the discussion that follows, we make the usual assumption
for PCA that the (weighted) mean has been removed from
our vectors A.

We begin by recalling that PCA finds bases U and co-
efficients C which minimize the reconstruction error of the
training set A, in the least-squares sense:

ε =
M∑
i=1

N∑
j=1

(
aij −

k∑
l=1

uilclj

)2

, (4)

where there are M components to each vector, N vectors,
and we seek a PCA result with k basis vectors.



Instead, we would like to minimize

ε =
M∑
i=1

N∑
j=1

wij

(
aij −

k∑
l=1

uilclj

)2

, (5)

therefore weighting the contribution of each element of
each vector differently in the total error. Elements with a
zero weight should have no effect on our minimization.

We can solve a missing data problem of this type using
an E-M algorithm:

• Initialize U and C with estimates (from standard
PCA).

• Repeat until convergence:

– Expectation Step: Given the vectors A and the
bases U , find the coefficients C which will mini-
mize eq. (5).

– Maximization Step: Given the vectors A and the
coefficients C, find the bases U which will mini-
mize eq. (5).

For the E step, let us temporarily ignore the weights, and
we can easily see how to find the coefficients given the vec-
tors and the bases. For each vector Aj , we have an overde-
termined linear system, with one equation per vector ele-
ment:

aij =
k∑

l=1

uilclj , i = 1 . . .M. (6)

We solve for the coefficients corresponding to each vector
one at a time, in a least squares sense:

Cj = U†Aj , (7)

where U† denotes the pseudo-inverse.
This is an inefficient way to perform unweighted PCA,

but provides a starting point from which to apply the
weights for our problem. We simply scale both sides of each
equation from (6) by the square root of the corresponding
weight:

√
wijaij =

√
wij

k∑
l=1

uilclj , i = 1 . . .M. (8)

At first glance, the reader may conclude that this step does
nothing, but when a different scaling is applied to each
equation, the error contributions in eq. (5) are scaled as well.
For example, a constraint with weight zero will turn into the
equation 0 = 0 and have no influence on our minimization,
just as we hoped. A large weight will cause the error con-
tribution to be multiplied correspondingly. The solution to
eq. (8) is:

Cj = (diag(Wj)U)†WjAj , (9)

where diag(Wj) denotes a matrix with the weights for vec-
tor j on the diagonal and zero elsewhere.

The reasoning for the M step follows a nearly identi-
cal process as we find the bases given the coefficients. We
wish to emphasize a particularly subtle difference: instead
of solving a system of equations for each vector, where each
equation corresponds to one element, we now have a system
of equations for each vector element, where each equation
corresponds to one vector.:

√
wijaij =

√
wij

k∑
l=1

uilalj , j = 1 . . . N. (10)

The equations are identical to those in (8), but they are
grouped into different systems due to varying the other sub-
script. The solution is:

Ui = (diag(Wi)C)†WiAi. (11)

3. Experimental Results

We generated a layered active appearance model for a
collection of 128 frontal images of passenger cars. Figure 1
shows three typical images from the dataset. Images were
transformed to normalize for size and rotation, color data
was discarded, and we assumed symmetry, so used only the
data for the right half of each image.

We can use the LAAM to reconstruct (or compress) the
original dataset, or to generate novel instances similar to the
objects in our training set (fig. 3). The four samples shown
are images of cars which do not appear in the training set (or
the real world, probably for good reasons). Any sample can
be generated with or without particular features. The tex-
ture of these examples may appear somewhat homogenized,
especially when compared to real cars or our experiments
showing reconstruction of the training set (fig. 5). This is
due to the fact that we do not explicitly model the non-
Lambertian nature of cars, which are de-facto mirrors. The
interior, visible through the front windshield, appears sharp,
since we have reduced the dimensionality of our model in
that particular layer to only a single basis vector. Varying
the dimensionality per layer in this fashion is possible with
the layered active appearance model, but cannot be accom-
plished with traditional AAM, another advantage of the pro-
posed technique.

While we would expect reconstruction and extrapola-
tion from our model or a standard AAM, it is not techni-
cally possible to compare our model’s performance in these
operations to that of the standard AAM on this data set.
The AAM is unable to cope with the non-diffeomorphic
warps involved. To illustrate directly the shortcomings of
the AAM in this type of problem, we have “forced” a stan-
dard AAM to model the same dataset, by removing certain



Figure 3. Novel images generated by randomly sam-
pling from the layered active appearance model. Any
sample can be generated with or without particular
features; in the first case we omit the fog lights. We
do not explicitly model the non-Lambertian nature
of cars, so the texture of these samples may appear
smoothed.

(a) (b)

Figure 4. Attempts at reconstruction and extrapo-
lation of the car dataset using a standard active ap-
pearance model. (a) Reconstruction exhibits blurring,
tearing, and ghosting. (b) Extrapolation generates im-
possible geometry (or radically novel designs).

landmarks and relaxing geometric constraints. As expected,
the reconstruction of an image from the training dataset
(fig. 4) is poor. It exhibits blurring and warping around
the license plate, where the dataset is geometrically unsta-
ble,“tearing” between the headlights and grill, where the ad-
jacent polygons were pulled apart and unable to be filled
in, and “ghosting” in the interior, where the same region
in the LAAM was corrected by adjusting the dimensional-
ity of that layer. Attempts at extrapolation are even worse,
frequently generating impossible geometry.

In addition to its descriptive power, the layered active
appearance model makes certain useful operations possible.
In figure 5, we can see the effect of adding a feature in the
synthesis phase, when it was not present in the original im-
age. The model extrapolates the appearance, position, and
shape of the missing feature and fills it in. The opposite op-
eration, removing a feature and filling in the occluded area,
is seen in figure 6. It is also possible to move features with-
out disturbing the local structure of the image (fig. 7).

4. Summary and Conclusions

We have presented the layered active appearance model,
a generalization of active appearance models which allows
for missing features, occlusion, and substantial spatial re-
arrangement of features. Our model is well-suited to many
modeling tasks which are beyond the capabilities of the tra-
ditional AAM.

An E-M algorithm has been derived to generate the pro-
posed model from training data, and an example of the re-
sulting model has been shown, along with several images
illustrating the capabilities of our approach. While AAMs
are often tested with faces, which exhibit diffeomorphic
warping, relatively little inter-subject variability, and mostly
Lambertian reflection, we have selected a much more chal-
lenging dataset, and shown that geometric transformations,
including the appearance and removal of parts and motion
of one layer on top of others, are correctly captured by
our model. Thus, testing on datasets such as faces, where
AAMs already work well, is uninteresting; our model natu-
rally overfits in such cases.

As with any robust modeling framework, there are rich
possibilities for future work, such as automatic identifica-
tion of features and landmarks, application to pose change
in three-dimensional scenes, and the use of the weights to
reflect transparency, noise, or uncertainty.
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(a) (b)
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Figure 5. Adding features to an image. The original
car in (a) did not have fog lights. Our model extrap-
olates their appearance, position, and shape and gen-
erates (b). For the sports car in (c), our model extrap-
olates (d) a small air intake and oversized fog lights
matching the shape of the grill.

Figure 6. Removing a feature from an image. There
is no explicit inpainting in our approach, so the region
appears as a “patch”. However, the general appear-
ance is correct.

Figure 7. Moving a feature without disturbing the lo-
cal geometry of the image. The license plate is moved
down, while the headlights are moved down and to-
ward the inside of the car.
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