
TST/BTD: An End-to-End Visual Recognition System

Taehee Lee Stefano Soatto

Technical Report UCLA-CSD100008

February 8, 2010, Revised March 18, 2010

Abstract
We describe a visual recognition system operating on a hand-held device. Feature selection and

tracking are performed in real-time, and used to train a template-based classifier during a capture phase
prompted by the user. During normal operation, the system scores objects in the field of view based
on their ranking. Severe resource constraints have prompted a re-evaluation of existing algorithms
improving their performance (accuracy and robustness) as well as computational efficiency. We motivate
the design choices in the implementation with a characterization of the stability properties of local
invariant detectors, and of the conditions under which a template-based descriptor is optimal. The
analysis also highlights the role of time as “weak supervisor” during training, which we exploit in our
implementation.

1 Introduction

In an attempt to implement a visual recognition system on a hand-held device, we chose off-the-shelf al-
gorithms, suitably simplified to fit into the tight computational constraints. The disappointing overall
performance prompted a re-evaluation of the algorithm from successive simplifications of basic models and
assumptions. This has guided the architecture of the algorithm and its separate modules, including feature
selection, tracking and description. The resulting modules are reminiscent of existing algorithms, but dif-
ferent in ways that yield better performance while reducing their computational cost. We describe our
implementation in sect. 3, and the analysis that motivates the design choices in sect. 2.

1.1 Summary of contributions and relation to prior work

Our effort relates to a wealth of recent work on visual recognition that cannot realistically be reviewed here.
We refer the reader to the PASCAL challenge [1] for references and comparisons of existing approaches. Our
effort to run in real-time relates to [2], but resource constraints do not allow us to use sophisticated classifi-
cation schemes such as random forests. Instead, we choose to work with simple classifiers (nearest neighbors
and TF-IDF [3]) and focus on representation as the core issue. Modules of our system relate to multi-scale
feature selection, tracking, local descriptors, and bag-of-features classification, specifically on baseline algo-
rithms [4, 5, 6, 7] that we first intended to “dumb-down” to fit a hand-held platform, but ended up improving
instead. We propose a method to integrate multi-scale detection and tracking that does not involve joint
location-scale optimization [8], but explicitly accounts for topological changes across scales. This approach
(dubbed “tracking on the selection tree”, TST) respects the semi-group stucture of scaling/quantization, and
is motivated by the “structural stability” of the selection process. This improves accuracy and robustness
while making tracking more efficient. We also replace traditional single-view descriptors [6, 9, 10] with a
template that is designed to be optimal in the mean-square sense, under conditions described in sect. 2,
dubbed “best template” descriptor (BTD). Our contributions in this manuscript are the TST (sect. 2.4), the
BTD (sect. 2.6), their motivation and analysis (sect. 2), and an iPhone implementation (sect. 3).

1

2 Representation

This section motivates our algorithm design choices via analysis of an abstraction of the recognition problem.
The reader interested in just the algorithmic aspect of the system can skip ahead to sect. 3.

A grayscale image I : Ω ⊂ R2 → R+; x 7→ I(x) is generated by a scene ξ = {S, ρ} ∈ Ξ of piecewise
smooth surfaces S ⊂ R3 and albedo ρ : S → Rk. Nuisances {g, ν} are divided into those that are a group
g ∈ G (contrast transformations, local changes of viewpoint) and a non-invertible map ν (quantization,
occlusions). Deviations from this model (non-diffuse reflectance, mutual illumination, cast shadows, sensor
noise) are not represented explicitly and lumped as an additive error n:

I = h(gξ, ν) + n. (1)

As abstract “visual recognition” tasks we consider classifications (detection, localization, categorization and
recognition) that boil down to learning and evaluating the likelihood p(I|c) of a class c that affects the data
via a Markov chain c → ξ → I. For simplicity we only consider binary symmetric 0-1 loss c ∈ {0, 1} and
prior P (c) = 1

2 . To compute p(I|c), one could either marginalize (MAP) the hidden variables ξ, ν, g, which
requires knowledge of the priors dP (ξ|c), dP (ν) and dP (g), or max-out (ML) the nuisances (i.e. assume
uninformative priors).

2.1 Features and templates

MAP and ML require costly computations at decision time, incompatible with real-time operation on a hand-
held. Thus, we restrict the family of classifiers to nearest-neighbors and focus on the optimal representation
Îc:

ĉ = arg min
c∈{0,1}

d(I, Îc) = ‖I − Îc‖∗

The template Îc can be any statistic (function) of the training data {Ik}Kk=1 ∼ p(I|c). A feature φ(I) is any
statistic that does not require label knowledge. The distance ‖ · ‖∗ can be defined in terms of a feature,
d(I, Îc)

.
= ‖φ(I) − φ(Îc)‖. This approach does not generally enjoy the properties of the Bayes and ML

discriminants [11], so two questions are critical: What is the “best” template Îc, and how can it be computed
from the training set? Are there conditions when the best template yields optimal classification? We answer
these in order.

2.1.1 What is the “best” template?

The one that induces the smallest expected distance for each class. It depends on the distance function; for
the Euclidean case we have Îc = arg minIc Ep(I|c)[‖I − Ic‖2] =

∫
I ‖I − Ic‖

2dP (I|c), that is solved by the
class-conditional mean and approximated by the sample mean using the training set

Îc =

∫
I
IdP (I|c) '

∑
k

h(gkξk, νk) (2)

where the priors gk ∼ dP (g), νk ∼ dP (ν), ξk ∼ dQc(ξ) act as importance distributions. Of course, the
averaging operation entails a loss of discriminative power, so the BTD is only “best” among templates. As
an alternative, one could retain the distribution aggregated over time, but that would cause the comparison
to be more involved. Different instantiations of this approach, corresponding to different groups G, scene
models Ξ, and nuisances ν, yield Geometric Blur [9], and DAISY [10]. Rather than designing the priors
dP (g), dP (ν), we will rely on the active user to compute the integral in (2) in the training procedure.

In the case of group nuisances we can compute the distance on the quotient, ‖I− Î‖I/G
.
= ‖φ(I)−φ(Î)‖

and avoid blurring-out the group in the template, which yields an optimal (equi-variant) classifier (thm 2).
Unfortunately, not all nuisances are groups, a problem we address in sect. 2.2. Until then, we describe how
to design features φ for group nuisances.

2

A feature φ : I → RF (any deterministic function of the data taking values in some vector space) I 7→ φ(I)
is G-invariant if φ ◦ h(gξ, ν) = φ ◦ h(ξ, ν), ∀ g ∈ G and ξ, ν in the appropriate spaces. For group nuisances
we can define a complete (a.k.a. “discriminative” or “sufficient” or “distinctive”) feature as one that captures
the entire orbit: referring to (1) with ν = 0 (we will address ν 6= 0 in sect. 2.2) we have that φ : I → Rdim(Ξ)

is complete iff [φ ◦ h(gξ, 0)]
.
= {gφ ◦ h(ξ, 0), ∀ g ∈ G} = [ξ]. A complete invariant feature is the ideal

canonical template, in the sense that it captures everything that is in the data but for the effect of G. Thus
we define the canonical representative ξ̂ as1

ξ̂
.
= φ(I) = φ ◦ h(gξ, 0) = φ ◦ h(ξ, 0). (3)

One of many ways to design an invariant feature is to use the data I to “fix” a particular group element
ĝ(I), and then “undo” it from the data. If the data does not allow fixing a group element ĝ, it means it is
already invariant to G.

Definition 1 With reference to (1), a (G-)co-variant detector is any functional ψ : I×G→ Rdim(G); (I, g) 7→
ψ(I, g) such that (i) The equation ψ(I, g) = 0 uniquely determines a group element ĝ = ĝ(I), and (ii)
ψ(I, ĝ) = 0, then ψ(I ◦ g, ĝ ◦ g) = 0 ∀ g ∈ G, where I ◦ g is defined by (I, g) = (h(ξ, 0), g) 7→ h(gξ, 0)

.
= I ◦ g.

The first condition (i) is equivalent to the Jacobian being non-singular:

|Jg|
.
= det

(
∂ψ

∂g

)
6= 0 (4)

We say that the image I is G-canonizable if there exists a covariant detector ψ such that ψ(I, ĝ) = 0.
Depending on ψ, the statistic may be local, i.e. only depend on I(x), x ∈ B ⊂ Ω on a subset of the image
domain B; with an abuse of nomenclature, we say that the region B is canonizable. With a co-variant
detector we can easily construct a complete invariant descriptor as follows: For a given co-variant detector
ψ that fixes a canonical element ĝ via ψ(I, ĝ(I)) = 0 we call the statistic

φ(I)
.
= {I ◦ ĝ−1(I) | ψ(I, ĝ(I)) = 0}. (5)

a canonized descriptor. The following results are proven in an appendix uploaded as supplementary material.

Theorem 1 (Canonized descriptors are complete invariants) Let ψ be a co-variant detector. Then
the corresponding canonized descriptor (5) is a complete invariant statistic.

Theorem 2 (When is a template optimal?) If a complete G-invariant descriptor ξ̂ = φ(I) can be con-

structed, a classifier based on the class-conditional distribution dP (ξ̂|c) attains the same risk as one based
on the likelihood p(I|c).

In the next section we show what groups can be canonized.

2.2 Interaction of invertible and non-invertible nuisances

We now relax the condition ν = 0; the maps I ◦ g .
= h(gξ, 0) and I ◦ ν .

= h(ξ, ν) can be composed,
I ◦ g ◦ ν = h(gξ, ν) but, in general, they do not commute. When they do, I ◦ g ◦ ν = I ◦ ν ◦ g, we say that
the group nuisance g commutes with the (non-group) nuisance ν.

For a nuisance to be canonizable (i.e. eliminated via pre-processing without loss of discriminative power)
it has to be invertible and commutative. The following theorem, proved in appendix, shows that this is the
case only for the isometric group of the plane.

Theorem 3 The only nuisance that commutes with quantization is the isometric group of the plane (rota-
tions, translations and reflections).

1Note that we drop the subscript c and the superscript from the template since φ(Îc) is invariant to G regardless of the class
c, and it is a sufficient statistic, with no approximation when ν = 0.

3

As a corollary, the affine group, and in particular its scaling sub-group, cannot be eliminated in the
representation without a loss of discriminative power. This is unlike what [8] prescribes, and [6] uses, since
they did not include quantization in their analysis.

Planar rotations commute with occlusions and quantization. But, rather than using a co-variant detector
as a canonization mechanism [6], we use the projection of the gravity vector onto the image plane. While
translation commutes with quantization, it does not commute with occlusion, and therefore it should be
marginalized or eliminated at decision time. Following the analysis in [12], with probability one a translation-
co-variant detector yields isolated (Morse) critical points xi ∈ Ω. Therefore, marginalization/max-out at
decision time reduces to a combinatorial hypothesis test (sect. 2.4). In this sense, we say that translation is
locally canonizable. The next section takes this analysis one step closer to implementation.

2.3 Designing feature detectors

Proper design of a feature detector consists of canonizing the canonizable nuisances in a way that is the least
“sensitive” to the non-invertible ones. Sensitivity is traditionally captured by the notion of (BIBO) stability.
Unfortunately, this is not meaningful in the context of recognition, and indeed we show in the appendix that
any co-variant detector as defined in 1 is BIBO stable. Instead, we introduce a different notion of stability
that is relevant to recognition [13].

Definition 2 (Structural Stability) A G-covariant detector ψ | ψ(I, ĝ(I)) = 0 is Structurally Stable if
small perturbations δν preserve the rank of the Jacobian matrix (4):

∃ δ > 0 | |Jĝ| 6= 0⇒ |Jĝ+δĝ| 6= 0 ∀ δν | ‖δν‖ ≤ δ (6)

with δĝ
.
= |Jĝ|−1 ∂h

∂ν δν.

We define the maximum norm of the nuisance that does not cause a singularity in the detection mechanism
the structural stability margin, which we use to rank features in sect. 3:

δ∗ = sup ‖δν‖ | |Jĝ+Kδν | 6= 0 (7)

A sound feature detector is one that identifies Morse critical points in G that are as far as possible from
singularities. The selection of canonical frames according to this principle is described in the next section.

2.4 Proper Sampling and Correspondence

In traditional signal processing, proper sampling refers to regular sampling at twice the Nyquist frequency.
This is irrelevant in recognition, where the task is not to reconstruct an exact copy of some “true” image. A
more appropriate condition of proper sampling would be for a feature detector ψ(I, ĝ) = 0 for the location-
scale group g = {x, σ} to be topologically equivalent to the “true” image ψ(h(ξ, 0), ĝ) = 0.

Unfortunately, we do not have the “true” image h(ξ, 0). However, under the Lambertian assumption,
this is equivalent to testing against the next image It+1(x).

Definition 3 (Proper Sampling) We say that a signal {It}Tt=1 is properly sampled at scale σ at time t
if the Morse-Smale complex of (It ∗ G(x;σ2)) is equal to that of (It+1 ∗ G(x;σ2)).

Of course, occlusions yield a signal that is not properly sampled, which leads to failure of the combinatorial
matching test of two local invariant features at decision time, which is what we want. Following standard
scale-space theory, in the absence of occlusions, for any signal I, there exists a large enough scale σ such
that I is properly sampled at σ. Also, assuming continuity and a sufficiently slow motion relative to the
temporal sampling frequency, there exists a large-enough scale σmax such that the video signal is properly
sampled at that scale. This is relevant because, typically, temporal sampling is performed at a fixed rate,
and we do not want to perform temporal anti-aliasing by artificially motion-blurring the images, as this
would destroy spatial structures in the image. Note, however, that once a large enough scale is found, so

4

correspondence is established at the scale σmax, the motion ĝt computed at that scale can be compensated,
and therefore the (back-warped) images It ◦ ĝ−1

t can now be properly sampled at a scale σ ≤ σmax. This
procedure can be iterated, until a minimum σmin can be found beyond which no topological consistency is
found. Note that σmin may be smaller than the native resolution of the sensor, leading to a super-resolution
phenomenon.

This analysis is the basis of our integrated approach to selection and tracking, dubbed tracking on
the selection tree (TST), whereby one first selects structurally stable features via proper sampling. The
structural stability margin determines the neighborhood in the next image where independent selection is to
be performed. If the procedure yields precisely one detection in this neighborhood, topology is preserved,
and proper spatio-temporal sampling is achieved. Otherwise, a topological change has occurred, and the
track is broken.

Figure 1: Tracking on the selection tree. The approach we advocate only provides motion estimates
at the terminal branches (finest scale); the motion estimated at inner branches is used to back-warp the
images so large motion would yield properly-sampled signals at finer scales (left). As an alternative, the
motion estimated at inner branches can also be returned, together with their corresponding scale (middle).
Traditional multi-scale detection and tracking, on the other hand, first “flattens” all selections down to the
finest level (dashed vertical downwards lines), then for all these points consider the entire multi-scale cone
above (shown only for one point for clarity). As a result, multiple extrema at inconsistent locations in scale-
space are involved in providing coarse-scale initialization (right). Motion estimates at a scale finer than the
native selection scale (thinner green ellipse), rather than improving the estimates, degrade them because of
the contributions from spurious extrema (blue ellipses). Motion estimates are shown on the right (blue =
TST, green = multi-scale Lucas-Kanade (MLK)).

This is illustrated in fig. 1. Note that only the terminal branches of the selection scale-space provide
an estimate of the frame ĝ, whereas the hidden branches are used only to initialize the lower branches.
Alternatively, one can report each motion estimate at the native selection scale (fig. 1 middle). This is
different than multi-scale tracking as traditionally done [4] described in [5] and implemented in OpenCV,
illustrated in fig. 1 (right).

2.5 Local invariant frames

The selection procedure yields a topological tree in scale-space with locations {xi}Ni=1 and, for each location,

multiple scales {σij}N,Mi,j=1. Once rotation is canonized using gravity as a reference, we have a collection of
similarity (reference) frames ĝij = {xi, σij , Rij} each identifying a region Bσij (x−Rijxi), where a complete

5

contrast invariant can be computed:2

φ(I) = { ∇h(ĝijξ, ν)

‖∇h(ĝijξ, ν)‖
= I ◦ ĝij(x)

.
= φij(I) ∀ x ∈ Bσi,j (x−Ri,jxi).}

N,M
i,j=1 (8)

The feature φ(I) is now a multi-component descriptor for the entire image I. Non-invertible nuisances
are not canonizable and must be marginalized or eliminated at decision time. In particular, occlusions
are marginalized via a combinatorial matching test of collections of features {φij(I)} in different images.
Arbitrary changes of viewpoint correspond to diffeomorphic domain deformations that do not constrain the
frames {ĝij}, making the collection {φij(I)} a bag of features. This in part explains the surprising success
of this simplistic model, which we adopt in sect. 3. Feature descriptors computed on a test image must be
compared with the best descriptor learned from the training set.

2.6 Learning best-template descriptors

In order to compute the best template (2), one needs to average with respect to the nuisances that have
not been canonized. The prior dP (ν) is generally not known, and neither is the class-conditional density
dQc(ξ). However, if a sequence of frames {ĝk}Tk=1 has been established in multiple training images {Ik}Tk=1,
with Ik = h(gkξk, νk), then it is easy to compute the best (local) template via

Îc =

∫
I
IdP (I|c) =

∑
νk ∼ dP (ν)
ξk ∼ dQc(ξ)

φ ◦ h(ĝkξk, νk) =
∑
k

I ◦ ĝk =
∑
k,i,j

φij(Ik) (9)

where φij(Ik) are defined in eq. (8) for the k-th image Ik. A sequence of canonical frames {ĝk}Ti=1 is the
outcome of a tracking procedure (sect. 2.4). Note that we are tracking reference frames ĝk, not just their
translational component (points) xi, and therefore tracking has to be performed on the selection tree (fig.
1). The template above Îc, therefore, is an averaging of the gradient direction, in a region determined by ĝk,
according to the nuisance distribution dP (ν) and the class-conditional distribution dQc(ξ), as represented
in the training data. This “best-template descriptor” (BTD) is implemented in sect. 3. It is related to
[14, 7, 9, 10] in that it uses gradient orientations, but instead performing spatial averaging by coarse binning,
it uses the actual (data-driven) measures and average gradient directions weighted by their standard deviation
over time. The major difference is that composing our template requires local correspondence, or tracking,
of local regions gk, in the training set.

Note that, once the template descriptor is learned, with the entire scale semi-group spanned in dP (ν)3

recognition can be performed by computing the descriptors φij at a single scale (that of the native resolution
of the pixel). This significantly improves the computational speed of the method, which in turn enables
real-time implementation on a hand-held device (sect. 3).

2.7 Learning priors (and categories)

Instead of having to learn the priors for each object separately during training, we can exploit the training
of multiple objects to learn priors that can be shared among objects or categories. Assuming canonizable
nuisances have been eliminated (although this is not strictly necessary, hence we will maintain the notation
g, ν for all nuisances), the learning procedure consists in solving, to the extent possible, for the model
parameters

ξ̂, ĝk, ν̂k = arg min
ξ,gk,νk

‖Ik − h(gkξ, νk)‖∗ (10)

2Alternative contrast-invariant mechanisms include local contrast normalization or spectral ratios computed from color
images.

3Either because of a sufficiently rich training set, or by extending the data to a Gaussian pyramid in post-processing.

6

The problem (10) can be shown to be equivalent (under the Lambertian assumption) to image-to-image
matching as described in sect. 2.4. Once TST has been performed (yielding ĝi), and the residual computed
(yielding ν̂i), sample-based approximations for the nuisance distributions can be obtained, for instance

dP (ν) =
∑
i

κν(ν − ν̂i)dµ(ν); dP (g) =
∑
i

κg(g − ĝi)dµ(g); (11)

where κ are suitable kernels (Parzen windows). If the problem cannot be solved uniquely, for instance
because there are entire subsets of the solution space where the cost is constant, this does not matter as any
solution along this manifold will be valid, accompanied by a suitable prior that is uninformative along it.

When the class is represented not by a single template ξ, but by a distribution of templates, as in category
recognition, the problem above can be generalized in a straightforward manner, yielding a solution ξ̂i at each
capture session, from which a class-conditional density can be constructed.

dQc(ξ) =
M∑
i=1

κξ(ξ − ξ̂i)dµ(ξ). (12)

An alternative to approximating the density Qc(ξ) consists of keeping the entire set of samples {ξ̂}, or
grouping the set of samples into a few statistics, such as the modes of the distribution dQc, for instance
computed using Vector Quantization, which is the choice we adopt in our implementation in sect. 3.

3 Implementation on an iPhone

We have implemented the recognition system described above on an iPhone 3GS with a 600MHz ARM chip
CPU. Each image is captured sequentially with a refresh rate of 15 frames-per-second (FPS). The screen is
split into two, half for capture half for visualization, resulting in a spatial sampling of 320× 240 pixels.

3.1 Feature Detection and Tracking

To determine the correspondence of (canonical reference) frames ĝij(t) as described in sect. 2.4, for each scale
σj , j = 0, . . . , 4, limited by computational resources, we perform independent detection of xi(t) as in sect. 2.5
using FAST corner detection [14] with size and threshold parameters 9 and 20 respectively, with non-maximal
suppression to guarantee proper (spatial) sampling as described in sect. 2.4. The rotational reference Rij
can be fixed by gravity as described in sect. 2.5 or assumed vertical. Each feature ĝij

.
= {xi, σj , Rij} is

scored in decreasing order of structural stability from def. 2, by measuring the scale-normalized distance to
the nearest detected feature. Correspondence is established for the translational component xi(t + 1) via
a simple (differential) translational tracking algorithm [4] that, starting from the locations selected at the
coarsest scale j = 4, provides vi4(t) such that x̂i(t + 1)

.
= xi(t) + vi4(t) for all xi(t) selected at scale j = 4.

The new image is then back-warped by −2vi4(t) in each region Bσ3
(x − xi(t + 1)), described in eq. (8).

There, we re-select points xi(t+ 1) within the back-warped region, and repeat the procedure as described in
sect. 2.4.

If a topological change occurs at level j, the motion vij is not propagated to level j − 1, and is instead
reported as a motion estimate for xi with native scale σj . From level j − 1 onward, the (multiple, or none)
features xi that fall within Bσj+1

(x−xi(t+ 1)) are used to propagate velocity estimates down until j = 0, as
illustrated in fig. 1 (left). In order to keep the number of tracked features between 40 and 50, rather than
only reporting motion at the finest scale vi0, we report motion at all scales, vij , each with its own scale σj ,
as illustrated in fig. 1 (middle).

This approach differs from traditional multi-scale feature detection and tracking as described in sect. 2.3.
It enables tracking over relatively large baselines as shown empirically in fig. 1, and improves accuracy and
(structural) stability, defined in def. 2 and quantified by the number of inlier matches. A quantitative exper-
iment on real sequences is reported in sect. 3.4 and demonstrated in a video clip uploaded as supplementary
material.

7

Although ideally we would like to have a full geometrically-validated outlier rejection stage [15], the iPhone
does not enable this to run in real-time. Therefore, we have settled for a coarser hypothesis test where the
(two-dimensional) configuration of selected features is hypothesized constant in the absence of occlusions,
in a coarsely binned histogram. Given a tracked feature, if its neighboring features in the previous frame
are tracked as its neighbors in the current frame again with more than a 0.5 threshold ratio, we classify it
as inlier, and otherwise reject it as a (partial) occlusion. Feature tracking results are then used to limit the
search space for feature detection in the new image. This is in line with a diffeomorphic domain deformation
model (sect. 2.5).

3.2 Feature Descriptors

Once local frames ĝij are available, we compute descriptors around each one following the guidelines of sect.
2.6. For each selected and tracked region, we compute gradient orientation using portions of source code
from the VLFeat library. Instead of building the scale-space for the original SIFT algorithm, we use the
image pyramid available from feature detection and tracking. In our implementation we have tested both
the standard SIFT descriptor, and the BTD with local contrast normalization (sect. 2.6). Both are updated
periodically as long as their corresponding frame is being tracked. Due to computational constraints, we limit
the number of SIFT descriptors computed at each frame to 5, selected among the features being tracked,
whereas the BTD can be computed for every features.

As discussed in sect. 2.5, the scale semi-group can be computed (off-line) after training data is available.
We limit the on-line description generation to the native scale of the images being captured, and defer the
scaling process off-line.

In each case, the descriptors are quantized using a vocabulary tree using hierarchical K-means [16]. We
used the training images from the 2009 PASCAL [1], and extracted 1M descriptors. The vocabulary tree
is built with 4 levels and 8 clusters each, forming 4096 clusters with centers in the leaf nodes. Thus each
descriptor can be represented as a short integer.

3.3 Recognition in a single video frame

Once a template is learned from multiple video frames, recognition is possible from a single image. We
use standard methods consisting of a bag-of-features model of features φij described in eq. (8), compatible
with an arbitrary viewpoint change for objects of general shape as described in sect. 2.5. The quantized
descriptors are used for learning object models, and also for recognizing the objects in a video frame. For
scoring a set of features with respect to a certain object, we use a term frequency-inverse document frequency
(TF-IDF) scheme, modified by substituting #(φij , d), the number of features φij corresponding to an object,
with either 1 or 0, depending on whether the corresponding feature is present or not. This way, a user can
take multiple views of an object effectively while learning the model of the object without producing skewed
sampling of features from different views. To recognize an object, we compute the TF-IDF score of the set
of features and compare against all the learned object models, and choose the object with the highest score.

While multiple video frames are indispensable in training, as described in sect. 2.7, they are not strictly
necessary for recognition. In our current implementation we perform independent classification for each
image. However, one could treat each image as a weak classifier in a cascade-of-classifier framework [17].
Although this is conceptually straightforward, it adds complexity to the process and has therefore not been
implemented in the current release.

3.4 Performance

The performance of our system, tested off-line, is qualitatively comparable with algorithms performing at
baseline levels on standard datasets such as the Caltech 101. However, direct comparison is not straight-
forward because we do not use multiple (supervised) hand-labeled training samples for each category, but
instead use multiple images of the same object, relying on the user to sample multiple aspects (viewpoints).
Although one may argue that our model is for individual object recognition, not object categories, the

8

performance in recognizing object classes represented in the Caltech 101 dataset is similar to the baseline
algorithms.

To obtain more meaningful performance evaluation, we compare the individual elements of our system
with the equivalent modules commonly used in the literature.

We compare TST tracking with standard multi-scale Harris corner selection with multi-scale Lucas-
Kanade tracker, as implemented in the OpenCV, which we refer to as MLK. Representative experiments
are illustrated in fig. 1, and quantitative experiments are reported in fig. 2 and table 1. There, it can be
seen that our approach is faster (for an equal number of tracked features), more accurate (a smaller median
motion error), and considerably more robust (a smaller spread between the mean and the median). With
this, the overall recognition that involves capturing images, detecting and tracking features, and calculating
descriptors is performed at a rate of about 7 frames-per-second.

MLK (1 step) TST (1 step) MLK (5 step) TST (5 step) MLK (9 step) TST (9 step)

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10
tracking error (mean,std)

frame steps

er
ro

r (
pi

xe
ls

)

Harris MLK
FAST MLK
Harris TST
FAST TST

0 1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250
computation time

frame steps

tim
e

(m
ilis

ec
on

ds
)

Harris MLK
FAST MLK
Harris TST
FAST TST

Figure 2: Comparison of multi-scale translational tracking and tracking on the selection tree.
First row: qualitative comparison of TST and MLK with increasing parallax. For a quantitative comparison,
Harris corners and FAST corners are tested for both TST and MLK. Bottom-left: tracking error for these
combinations of methods. Right: computation time. FAST-TST performs best in both accuracy and speed.

In fig. 3 we illustrate the comparison of the best-template descriptor with an equivalent SIFT descriptor.
To compare the two, we use a small set of objects (5-10) from [18]. An exhaustive experimental comparison
is not straightforward since the BTD depends on the training set, unlike other descriptors cited. Therefore,
we can construct cases with rich training sequences where the BTD outperforms all other descriptors, even
if they are learned on the same set (because we have the advantage of fine correspondence), and vice-versa
we can construct poor training sequences where a straight bag of SIFT features computed independently in
each video frame outperforms our approach. Representative quantitative experiments are reported in fig. 3
where it can be seen that SIFT and BTD perform similarly in terms of accuracy, but SIFT is significantly
more costly to compute. An exhaustive experimental comparison represents a separate contribution and
is currently under development. Qualitative results are illustrated in videos uploaded as supplementary
material.

9

tracking error (pixels) computation inlier

median mean std. time (ms) ratio (%)

Harris-MLK short 0.35 0.72 2.49 91.62 83.18
FAST-MLK short 0.36 0.97 5.94 121.95 80.69
Harris-TST short 0.35 0.61 1.15 17.58 84.31
FAST-TST short 0.34 0.56 0.72 20.60 85.74

Harris-MLK long 0.83 2.19 9.30 114.00 59.26
FAST-MLK long 0.88 3.10 14.66 143.39 55.85
Harris-TST long 0.84 1.91 5.37 23.63 58.17
FAST-TST long 0.81 1.67 4.00 22.78 59.28

Table 1: TST and MLK are compared on short baseline (two adjacent frames) and long baseline (skipping
every two or more frames).

objects SIFT BTD

98.6 1.4

95.7 4.3

10.0 72.9 17.1

100.0

10.0 90.0

94.3 1.4 4.3

98.6 1.4

1.4 98.6

2.9 97.1

2.9 5.7 91.4

Figure 3: Comparing SIFT and best-template descriptors. A representative sample of the BTD is
shown in the left. We generate confusion matrices of using SIFT and BTD, by training objects at one scale
and testing for different viewing angles and scales [18]. Performance is similar (some trials go in favor of
SIFT, others to BTD, depending on the training sequences), but BTD is significantly faster to compute, as
shown in table 2.

Tracking Descriptors Frame Rate
TST-BTD 40 ms 15 ms 7 fps
MLK-SIFT 100 ms 180 ms 3 fps

Table 2: Runtime computation time on an iPhone.

4 Discussion

We have described an implementation of a recognition system on a mobile device and an analysis that
motivates the design choices in light of attempting to make the run-time cost of the algorithm as small as
possible. By restricting the classifier to a simple comparison to a template, we are forced to consider which
one is the best template. This leads to the best-template descriptor (BTD).

The need to integrate correspondence, or tracking, into recognition forces us to implement an efficient
feature selection and tracking mechanism. Guided by the notion of (Morse) isolation and proper spatio-
temporal sampling, we have designed a modified (similarity)-frame detection and tracking algorithm, TST.
It is cheaper and better than stock algorithms available, for instance, through the OpenCV and VLFeat
software libraries.

10

Once a representation is in place, we use standard clustering and scoring algorithms to perform recog-
nition. At present, each captured objects represents a category in itself, and the score is visualized on the
graphic display.

Our BTD assumes that the object is (at least locally) rigid, and domain deformation is due to changes
of viewpoint. Thus it is not suited for complex articulated objects such as humans. In that case, the blurred
template will lose discriminative power. Instead, one would need to independently track and describe rigid
parts, and group them as a coherent entity in post-processing. This is a research program in itself beyond
the scope of this paper.

The algorithm we propose can be easily implemented by the skilled reviewer on a simulation platform.
The system implementation on an iPhone will be available for free download, and a video describing its
operation is uploaded as supplementary material.

References

[1] Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results. http://www.pascal-
network.org/challenges/VOC/voc2009/workshop/ (2009)

[2] Shotton, J., Johnson, M., Cipolla, R., Center, T., Kawasaki, J.: Semantic texton forests for image
categorization and segmentation. In: IEEE CVPR. (2008) 1–8

[3] Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill New York (1983)

[4] Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision.
In: Image Understanding Workshop. (1981) 121–130

[5] Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: IEEE CVPR.
Volume 1. (2001) 1090–1097

[6] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 2 (2004) 91–110

[7] Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR. (2005)
886–893

[8] Lindeberg, T.: Principles for automatic scale selection. Technical report, KTH, Computational Vision
and Active Perception laboratory (1998)

[9] Berg, A., Malik, J.: Geometric blur for template matching. In: IEEE CVPR. (2001) 607

[10] Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: IEEE CVPR. (2008) 1–8

[11] Robert, C.P.: The Bayesian Choice. Springer Verlag, New York (2001)

[12] Mumford, D., Gidas, B.: Stochastic models for generic images. Quarterly of Applied Mathematics 54
(2001) 85–111

[13] Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable
extremal regions. In: BMVC. (2002)

[14] Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: ECCV. Volume 1.
(2006) 430–443

[15] Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with application
to image analysis and automated cartography. Comm. of ACM 24 (1981) 381–395

[16] Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE CVPR. Volume 2.
(2006) 2161–2168

11

[17] Viola, P., Jones, M.: Robust real-time object detection. In: Second International Workshop on Statis-
tical and Computational Theories of Vision. (2001)

[18] Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. IJCV 73
(2007) 263–284

12

SUPPLEMENTARY MATERIAL

This appendix describes the video uploaded, and collates some support material referenced in the text. The
latter can be skipped without compromising the integrity of our contribution.

A Uploaded video

The first part of the video shows a representative sample of a tracking sequence, whereby the iPhone is
moved at faster and faster speed in front of a complex scene, that includes a checkerboard. OpenCV’s
camera calibration method for checkerboard patterns is used to generate “ground truth” values for the
quantitative comparisons reported in the paper. It can be seen that the TST is fast and reasonably accurate
even for fast motions, since it is designed to be maximally structurally stable. This algorithm improves stock
approaches such as MLK both in terms of accuracy, robustness, and computational speed.

The second part shows the user interface of the recognition system. The user selects an object by clicking
on the screen, and moves the phone to learn a model (BTD). The process is repeated for a number of objects
usually ranging between 5 and 10. If the user wants to group multiple objects under the same label, he or
she can drag the icon of the newly learned object onto that of an existing one. In recognition mode, the
system displays the icon of the object being recognized, based on highest TF-IDF score, in real-time for
every captured frame.

B BIBO Stability

As mentioned in the paper, the traditional notion of stability, that measures the sensitivity of a descriptor
with respect to small perturbations of a nuisance, is irrelevant to recognition. Indeed, we now show that any
properly designed co-variant detection is automatically stable in this sense.

Definition 4 (BIBO stability) A G-covariant detector ψ (Def. 1) is bounded-input bounded-ouput
(BIBO) stable if small perturbation in the nuisance cause small perturbations in the canonical element.
More precisely, ∀ ε > 0 ∃ δ = δ(ε) such for any perturbation δν with ‖δν‖ < δ we have ‖δĝ‖ < ε.

Note that ĝ is defined implicitly by the functional equation ψ(I, ĝ(I)) = 0, and a nuisance perturbation δν
causes an image perturbation δI = ∂h

∂ν δν. Therefore, we have from the Inverse Function theorem4

δĝ = −|Jĝ|−1 ∂h

∂ν
δν

.
= Kδν (13)

where Jg is the Jacobian (4) and K is called the BIBO gain. As a consequence of the definition, K <∞ is
finite. The BIBO gain can be interpreted as the sensitivity of a detector with respect to a nuisance. Most
existing feature detector approaches are BIBO stable with respect to simple nuisances. Indeed, we have the
following

Theorem 4 (Covariant detectors are BIBO stable) Any covariant detector is BIBO-stable with re-
spect to noise and quantization.

BIBO stability is reassuring, and it would seem that a near-zero gain is desirable, because it is “maximally
(BIBO)-stable.” However, simple inspection of (13) shows that K = 0 is not possible without knowledge of
the “true signal.” In particular, this is the case for quantization, when the operator ψ must include spatial
averaging with respect to a shift-invariance kernel (low-pass, or anti-aliasing, filter). However, a non-zero
BIBO gain is irrelevant for recognition, because it corresponds to an additive perturbation of the domain
deformation (domain diffeomorphisms are a vector space), which is a nuisance to begin with. On the other
hand, structural instabilities are the plague of feature detectors.

4One has to exercise come care in defining the proper (Frechèt) derivatives depending on the function space where ψ is
defined.

13

C Proofs

Below are the proofs of the claims made in the paper.
Proof of thm 1: To show that the descriptor is invariant we must show that φ(I ◦ g) = φ(I). But

φ(I ◦ g) = (I ◦ g) ◦ ĝ−1(I ◦ g) = I ◦ g ◦ (ĝg)−1 = I ◦ g ◦ g−1ĝ−1(I) = I ◦ ĝ−1(I). To show that it is complete it
suffices to show that it spans the orbit space I/G, which is evident from the definition φ(I) = I ◦ g−1.

Proof of thm 2: The proof follows from the definitions and theorem 7.4 on page 269 of [11].
Proof of thm 3: We want to characterize the group g such that I ◦g◦ν = I ◦ν◦g where ν is quantization.

For a quantization scale σ, we have the measured intensity (irradiance) at a pixel xi

I ◦ ν(xi)
.
=

∫
Bσ(xi)

I(x)dx =

∫
χBσ(xi)(x)I(x)dx

.
=

∫
G(x− xi;σ)I(x)dx (14)

where Bσ(x) is a ball of radius σ centered at x, χ is a characteristic function that is written more generally
as a kernel G(x;σ), allowing the possibility of more general quantization or sampling schemes, including soft
binning based on a partition of unity of Ω rather than simple functions χ. Now, we have

(I ◦ ν) ◦ g(xi) =

(∫
G(x− xi;σ)I(x)dx

)
◦ g =

∫
G(x− gxi;σ)I(x)dx (15)

whereas, with a change of variable x′
.
= gx, we have

(I ◦ g) ◦ ν(xi) =

∫
G(x− xi;σ)I(gx)dx =

∫
G(g−1(x′ − gxi);σ)I(x′)|Jg|dx′ (16)

where |Jg| is the determinant of the Jacobian (4) computed at g, so that the change of measure is dx′ = |Jg|dx.
From this it can be seen that the group nuisance commutes with quantization if and only if{

G = G ◦ g
|Jg| = 1.

(17)

That is, the quantization kernel has to be G-invariant, G(x;σ) = G(gx;σ), and the group G has to be an
isometry. The only isometry of the plane is the set of planar rotations and translations (the Special Euclidean
group SE(2)) and reflections. The set of isometries of the plane is often indicated by E(2).

Proof of thm 4: Noise and quantization are additive, so we have ∂h
∂ν δν = δν, and the gain is just the

inverse of the Jacobian determinant, K = |Jĝ|−1. Per the definition of co-varianat detector, the Jacobian
determinant is non-zero, so the gain is finite.

14

Figure 4: Comparison of multi-scale translational tracking and tracking on the selection tree A
representative example of the performance of our approach (blue arrows) compared to standard multi-scale
feature detection and tracking (green arrows). Sample images are from many sequences are shown in color
(left), and the corresponding estimated displacements are arranged in a matrix, where the position indicates
the source images: Images along the diagonal indicate displacement between images 1 and 2, 2 and 3, 3 and
4, 4 and 5 respectively. Images above the diagonal show the estimated motion between images 1 and 3, 2
and 4, 3 and 5; further up for images 1 and 4, 2 and 5, and finally 1 and 5. Significant mismatching occurs
as a result of tracking at all scales features that only exist at some scales (green). Restricting multi-scale
tracking to matched-scales determined at selection reduces the ambiguities, and is also significantly faster:
10.49 FPS for tracking the same number of features on the selection tree (blue) vs. 4.67 FPS for tracking in
the standard pyramid (green). Quantitative experiments are reported in table 3. Note that the discrepancy
between the two methods increases with the baseline: For small baseline (images along the diagonal), they
are similar (the blue arrows are drawn on top of the green ones), but for larger disparities (images above the
diagonal) the discrepancy grows.

15

median % error mean % error std. time [ms]/ # pts

MLK short 7.55 40.41 142.24 133.24ms
TST short 5.89 19.87 52.50 16.16ms

MLK < 10% 3.73 4.24 2.72 822# (59.7%)
TST < 10% 3.65 4.08 2.55 926# (67.3%)

MLK long 127.17 358.17 874.65 188.53ms
TST long 14.78 156.72 631.62 26.98ms

MLK < 10% 3.17 3.85 2.58 645# (32.5%)
TST < 10% 3.90 4.24 2.52 822# (41.4%)

Table 3: TST improves over multi-scale tracking in both accuracy, robustness and speed. The median,
mean and standard deviation of the error, normalized as a percentage of the ground-truth velocity vector
(to take into account images of different resolution) is reported above. The top block, “short,” refers to
an short-baseline, where the motion of a checkerboard moving in free-space (fig. 4) is estimated between
adjacent video frames (frames 1-2, 2-3, 3-4, etc.). Both algorithms perform reasonably well under these
conditions, with an improvement of about 20% in the median error and over 700% in computation speed for
the TST approach. The large mean and standard deviation of MLK indicates a high percentage of outliers
and mismatches. This is reflected in the second block, where only features that returned motion estimates
with less than 10% error are accounted for. In this case, the algorithms perform similarly, but TST has a
larger number of valid features (a 12% improvement). The lower block shows the same results for a “long”
baseline experiment, where the motion is estimated between video frames separated by 2, 3, and 4 steps
(frames 1-3, 2-4, . . . , 1-3, 2-5, . . . , 1-4, 2-5, . . . etc.). Again, when all features are accounted for, TST shows
marked improvement over MLK. When only the results with less than 10% error are counted, MLK slightly
outperforms TST (by 18%), but uses significantly fewer features (22% less). Of course, in the absence of
ground truth one does not know which features perform in the top 10%, and therefore, in the absence of
sophisticated and time-consuming robust matching tests, the overall performance of all the features is most
important. In this case, TST outperforms MLK by a large margin (over 700% in accuracy and 600% in
speed). Note that the results are averaged over a number of runs, so the number of inliers is aggregated over
a number of experimental runs, shown with the ratio to the total number of tracked features.

16

