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Abstract

We propose a solution to the generic “bilinear calibration-
estimation problem” when using a quadratic cost function
and restricting to (locally) translation-invariant imaging
models. We apply the solution to the problem of recon-
structing the three-dimensional shape and radiance of a
scene from a number of defocused images. Since the imag-
ing process maps the continuum of three-dimensional space
onto the discrete pizel grid, rather than discretizing the
continuum we exploit the structure of maps between (finite-
and infinite-dimensional) Hilbert spaces and arrive at a
principled algorithm that does not involve any choice of
basis or discretization. Rather, these are uniquely deter-
mined by the data, and exploited in o functional singular
value decomposition in order to obtain a regularized solu-
tion.

1 Introduction

An imaging system, such as the eye or a video-camera,
involves a map from the three-dimensional environment
onto a two-dimensional surface. In order to retrieve the
spatial information lost in the imaging process, one can
rely on prior assumptions on the scene and use pictorial
information such as shading, texture, cast shadows, edge
blur etc.. All pictorial cues are intrinsically ambiguous
in that prior assumptions cannot be validated: given a
photograph, it is always possible to construct (infinitely
many) different three-dimensional scenes that have it as
their image.

As an alternative to relying on prior assumptions, one
can try to retrieve spatial information by looking at dif-
ferent images of the same scene taken, for instance, from
different viewpoints (parallax), such as in stereo and mo-
tion'. In addition to changing the position of the imaging

*This research was supported by NSF grant I1S-9876145 and
ARO grant DAAD19-99-1-0139. The authors wish to thank John
C. Schotland and Joseph A. O’Sullivan for their enlightening sug-
gestions, and Shree Nayar for kindly providing us with test data.

INote that we must still rely on prior assumptions on photometry
in order to solve the correspondence problem.

device, one can change its geometry. For instance, one can
take different photographs of the same scene with differ-
ent lens apertures or focal lengths. Similarly, in the eye
one can change the shape of the lens by acting on the lens
muscles. There is a sizeable literature on algorithms to
reconstruct shape from a number of images taken with dif-
ferent imaging geometry (shape from defocus) or from a
controlled search over geometric parameters (shape from
focus) [4].

Estimating shape from focus/defocus boils down to
inverting certain integral equations, a problem known by
different names in different communities: in signal pro-
cessing it is “blind deconvolution”, in communications
and information theory “source separation”, in image pro-
cessing “restoration” or “deblurring”, in tomography “in-
verse scattering”, in computer vision “generic calibration-
estimation problem” [10]. Since images depend both on
the shape of the scene and on its reflectance properties
— neither of which is known — estimating shape is tightly
related to estimating reflectance. In this paper we con-
sider the two problems as one and the same and discuss
the reconstruction of both?.

The image formation process naturally takes place in
the continuum of three-dimensional space, while image
data are typically acquired on a discrete grid (e.g. the
CCD array). Most algorithms in the literature entail a
discretization in one way or another (sampling, decompo-
sition of functions in the continuum into a combination
of basis functions etc.), leaving the obvious problem of
choosing the order of the discretization or the basis to
the discretion of the user.

In this paper we propose a novel solution to the prob-
lem of reconstructing the shape and radiance of a scene
when using a quadratic cost function and restricting to
invariant integral kernels. Rather than approximating the
continuum with a discretization, in our approach the size
of the measurement array naturally imposes regularity
in the solution, which is obtained in infinite-dimensional
space using a functional SVD (singular value decomposi-
tion). We exploit the geometry of Hilbert spaces, which

2Since neither the light source nor the viewer move, we do not
distinguish between radiance and reflectance of a surface.



makes the analysis simple and intuitive. Our solution re-
sults in a straightforward and efficient algorithm that is
provably optimal and does not involve any choice of ba-
sis or discretization: all of these are determined by the
data. We present results on real and simulated images
that indicate the potential of our technique.

1.1 Statement of the problem

We are interested in inverting integral equations of the
form?®

I(e,y) = / h@y)dR  (z,y) € D (1)

by finding a measure R and a kernel h that satisfy the
equation where I is measured on a compact discrete lat-
tice* D C R

In order for the problem to admit a nontrivial solution,
something needs to be known about the kernel h. We
assume that it belongs to a parametric class of functions
where some of the parameters — which we call u — are
known while others — which we call ¢ — are not. We write
this by indicizing the kernel h¢ with u a vector of known
parameters. For any u, h9 belongs to a family of kernels
that we indicate with #7: H? = {h9 | ¢ € £} where X is
a compact set in IR? for some s. Even so, the problem is
well-known to be ill-posed. In general a solution does not
exist, due to the fact that (1) is only an approximation
of the model that generates the data. We will therefore
look for solutions that minimize a suitable optimization
criterion, for instance a regularized norm || - ||:

2)

h,R = i bject
, arghzglﬁg’RHnH subject to

I(z,y) = / K (2,4)dR +n(z,0) ¥ (&,9) €D, (3)

Remark 1 (Choice of optimization criterion) In his
seminal paper [5], Csiszdr presents a derivation of “sensi-
ble” optimization criteria for the problem above, and concludes
that the only two that satisfy a set of consistency azioms are
the two-norm — which we address in this paper — and the
information-divergence — which we address in [8]. The two
criteria result in radically different solutions, for in the first
case we can exploit the geometry of Hilbert spaces, while in the
second we have to resort to the tools of calculus of variations.

1.2 Motivations

In digital images, the brightness value recorded at a pixel
(%;,y;) is obtained by integrating the energy radiated by
a certain region of space that depends upon the optical
properties of the imaging system (h) as well as on the

3See section 2.1 for more details on the notation.

4When R is finite-dimensional, such as in point-wise affine struc-
ture from motion, we have that 7 = H R and the problem is known
as “factorization”.

physical properties of the environment (R). Typically,
neither is known. While data are recorded in a discrete
domain D (the pixel array), integration is naturally per-
formed in the continuum IR3.

Consider for instance a piecewise smooth surface in
space, parameterized by o. Consider then an imaging
system whose geometry can - to a certain extent - be
modified by acting on some parameters u € & C IR* for
some k. For instance, u could be the aperture radius of
the lens and the focal length. Due to the additive nature
of energy transport phenomena, the image is obtained by
integrating the distribution R against a kernel h that de-
pends upon ¢ and u. The generative model for the image
(i.e. the model that generates the measurements I) is
therefore of the form (1). We are interested in estimating
the shape of the surface o and the energy distribution R -
also called radiance - to the extent possible, by measuring
a number L of images obtained with different camera set-
tings uy,...,uz. We want to exploit the fact that, while
the energy distribution is naturally integrated in space,
measurements are taken on a grid. As we will see, rather
than using approximations, this will result in a natural
way of enforcing regularity in the solution.

1.3 Relation to previous work

In the literature of computational vision a number of
algorithms have been proposed to estimate depth from
focus/defocus. The most common assumption is that
the scene is a plane parallel to the focal plane (equifocal
assumption)([2, 6, 7, 12, 14, 15, 16, 17, 18, 19, 20]. This
paper is related to all of the above, since it also relies on
the equifocal assumption.

The capability to reconstruct the scene’s shape de-
pends upon the energy distribution it radiates. The con-
ditions on the radiance distribution that allow a unique
reconstruction of shape have been recently derived in [13].
Our method can be extended to solve a wider class of
problems, as discussed by Koenderink and Van Doorn in
[10].

There is also a vast body of related literature in the
signal processing community, where the problem is known
as “blind deconvolution” (or more generally “deblurring”).
The equifocal assumption is equivalent to assuming a
shift-invariant convolution kernel, which is also common
to most of the literature. The interested reader can see
the special issue [1] for references.

2 An operatorial solution
In this section we introduce the core of our algorithm. We

work in function space and use the geometry of operators
between Hilbert spaces. For basic results on operators



between finite and infinite-dimensional Hilbert spaces see,
for instance, [11].

2.1 Notation

If we collect a number of images with different control
parameters u; and organize them into an array
I=[L,,...,I,.]%, and so for the kernels h,,, we can get
rid of the subscript u and write I(z,y) = [ h?(z,y)dR
for (z,y) € D. The right-hand side can be interpreted as
the “virtual image” of a given surface o radiating energy
with a given (spatial) distribution R,
R(X,Y,Z): [ho(z,y,X,Y,Z)dR(X,Y,Z). For scenes
made with opaque objects, the integral is restricted to
their surface, and therefore it is to be interpreted in the
Riemannian sense [3]. In coordinates we write the in-
tegral as [ h(z,y,%,§)r(Z,§)didg for (z,y) € D and a
suitably chosen parameterization (,3) € IR?; we call r
the radiant density®. Since the image I is measured on
the pixel grid, the domain D (i.e. a patch in the image)
is D =[z1,...,2N] X [y1,---,Ym], so that we have
I(xzay]) - /ha(xia Yi, i‘,g)f’(i’,g)di’dﬂ (4)
fori =1...N,j = 1...M. We now want to write the
above equation in a more concise form. To this end,

consider the Hilbert space £2(IR?), with inner product
((-,)) : L2 x L2 — R defined by

(f,0) = (F,g)) = / f@ e y)dedy  (5)

and norm ||f|| = /{{f,f)). Consider also the space
REN*M [ RENM with the inner product (-, ) : RENXM x
R*V*M — R defined by

(A,B) — (A, B) = Trace{AB™}. (6)

and norm |A| = /{4, A). If we interpret points in R“N*M
as LM N-dimensional vectors, then the inner product is
the usual {(a,b) = a’h. We call the integer LM N = K.

2.2 Formalization of the problem

If we model® the radiant density r as a point in £2(IR?),
and the image I as a point in IR¥, then the imaging

5Strictly speaking, r is the Radon-Nikodym derivative of R and,
as such, it is not an ordinary function but, rather, a distribution
of measures. In what follows we will ignore such technicalities and
assume that we can compute integrals and derivatives in the sense
of distributions.

8By choosing to work on £2 we exclude automatically all har-
monic functions. We can do so because it has been proven in [13]
that the harmonic component of the radiance does not carry shape
information, and therefore our choice entails no loss of generality.

process, as understood in (1), can be represented by an
operator H

H:£? - RX;, r—I=Hr (7

In order to emphasize the dependence of H on o, we write
I=H(o)r (8)

This equation is just another way of writing (1). The

original problem can therefore be stated, in more concise
form, as

I - H(o)r|? 9)

o e, g
for a suitable compact set X. This notation is not only el-
egant but also enlightening, for it will allow us to use the
geometry of operators between Hilbert spaces to arrive
at a principled solution of the blind deconvolution prob-
lem (3) that minimizes a quadratic cost function. Before
doing so, we review some of the definitions that we will
need in the sequel.

2.3 Adjoints and orthogonal projectors

The bounded operator H : £2 — R* admits an adjoint
H* defined by the equation

(Hr,I) = {{r, H*D)) Vrel? IeRX (10)
from which we get that
H*:R¥ — % T hT(2,y)l. (11)

The (Moore-Penrose) pseudo-inverse Hf : R¥ — £2 is
defined such that » = H'T solves the equation
H*Hr = H*I (12)
when it exists; with an abuse of notation” we could write
HY = (H*H)~'H*. The orthogonal projector H- is then
defined as
HY:R¥ - RYX;, 1= HYI=(;-HHN (13)
where I, is the identity in R¥*¥. Note that this is a
finite-dimensional linear operator, represented therefore
by a matrix. The following proposition, which extends
the results of Golub and Pereyra [9], is the key to our
approach to blind deconvolution:

Proposition 1 Let &, 7 be local extrema of the func-
tional

¢(o,r) =|I — H(o)r|* (14)

"We have not defined the “inverse operator” (-)~!; however, in

the next section we will give an explicit formula for the pseudo-
inverse using the singular value decomposition.




and, assuming that H' exists, let & be a local extremum
of the function

(o) = |H*(o)I]". (15)

Furthermore, let 7 be obtained from & by ¥ = x(&), where
X is defined as

x(0) = H'(o)1. (16)
Then & is also a local extremum of (o), and 5,7 are also
local extrema of ¢(a,T).

Proof: 6 and 7 are defined by the following coupled equations
56,7 =0
D,¢(5,7) =0

where D,¢ stands for the Fréchet functional derivative of ¢
with respect to r [11]. On the other hand, & and 7 are defined

by
{%@=0
7= x(5).
Computing the derivatives explicitly, and indicating with a
“dot” the derivative with respect to o, we have that gf =
2((H(o)r)TH(o)r — ITH(o)r) = 0, which leads to

(17)

(18)

(H(o)?) " H(6)? = I"H(6)? (19)
while D¢ = 2(H" (0)H(o)r — H*(0)I) = 0 leads to
H*(3)H(6)f = H*(6)1. (20)

Now, the last equation is what defines the pseudo-inverse H'
(see (12)), and therefore it is satisfied, by construction, when

(21)

This shows that if & is a stationary point of ¢, its corre-
sponding # must be of the form x(&). The computation of
% = 2ITHYH(¢)I can be obtained from H-Hr =0 V r,
which leads to H-Hr + H-Hr = 0, and hence to

H'(c)= —H(0)H(c)H'(0).

#=H'6)I = x(6).

(22)

<) Let us now assume that I H-H(5)I =0, and let 7 =
x(¢). We want to show that % = 0, that is (19) is satisfied
with & = & (that (20) is satisfied follows directly from our
choice of ¥ from (21)). To this end, we write®
(Hr)'Hr = I"(HH' + HY)Hr = I" Hr (23)
where the second term of the right hand side is zero from our
assumption that ITH-H*(5)I = 0 and the ezpression of H
in (22).
=) Now let (19) and (20) hold for &,7. We want to show
that ITH-H*(7)I = 0. To this end, we write (19) as®

(HH'D)"Hr = I"Hr (24)
so that, after rearranging terms, we get that )
IT(Id—HHT)HHT[ = 0, but substituting the definition of H,
we get that ITH-H*(6)I = 0, which allows us to conclude
that (18) is satisfied with o = &.

8In the following we omit the argument & in order to simplify
the notation.

9For simplicity we omit the argument 4.

Remark 2 The significance of the proposition above consists
in the fact that, while (14) is an optimization problem on
an infinite-dimensional space, (15) is on a finite-dimensional
(and often small) space. Indeed, for the case of shape from
focus/defocus that we consider, it is a one-dimensional space.
Note also that the statement is non-trivial: in fact, (15) is ob-
tained by multiplying on the left (1) by the singular matriz HL.
This can add spurious solutions to the problem, as we know by
solving linear systems of equations'®. The proposition shows
that, in this specific case, this does not happen.
The conditions, however, impose the existence of the pseudo-

inverse, which is equivalent to assuming r belongs to a finite-
dimensional subspace of L® of dimension less than K.

2.4 Invariant kernels and the SVD

In order to solve (15) we must be able to compute H=.
This, naturally, depends upon the operator H. A big
help in the solution comes by assuming that H is shift-
invariant, so that Hr can be represented as a convolu-
tion product h * r. In the case of depth from defocus,
this is equivalent to approximating the scene (locally) by
a planar patch parallel to the lens at depth ¢. In this
case, solving (15) reduces to a simple one-dimensional
optimization problem, that can be solved in a variety of
ways (Newton-Raphson, gradient descent, discrete search
etc.)!1. The problem, therefore, boils down to computing
HL

In order to do so, we want to express the operator H
using its (infinite-dimensional) singular value decomposi-
tion. To this end, let {Az}, K = 1,...,00 be a sequence
of positive scalars sorted in decreasing order, {I;} an or-
thonormal set in IR® and {r4} an orthonormal set in £2.
We now look for the particular choice of such sets that
allows us to express H as

K
H=> Merpl. (25)
k=1
Note that H maps £2 onto R¥ as follows
K
r— Hr= Z Arlg /rk(x,y)r(x, y)dzdy. (26)

k=1

Assuming that the pseudo-inverse exists, it is easy to ver-
ify that it is given by

K
HY =3 "2y (27)
k=1

10For instance, the solution of Az = 0 is {x € Null(A)}, while
the solution to BAz =0 is {x € Null(a)} U {z | Az € Null(B)}.

"' The equifocal assumption is very powerful, but equally danger-
ous, as we have pointed out in [13]. Here we will assume that the
equifocal assumption is satisfied in a small patch of the image. This
will allow us to resolve boundaries within a precision equal to the
size of the patch.




while the orthogonal projector is

K
Hi=1,- Z LT (28)
k=1

In order for the pseudo-inverse to exist, we need to assume
that the singular values Ay are zero for k greater than an
integer p < K. This is equivalent to assuming that the
radiance belongs to a finite-dimensional subspace of £2,
which imposes a lower bound on the dimensionality of the
data to be acquired (number of blurred images and their
size).

The sequences {A}, {rr} and {I;} are found by solv-
ing the normal equations:

H*Hry, = )\irk
k=1... 29
{HH*Ik = X1, P (29)
or, making the notation explicit
fhT(xay)h(i.ag)rk('%ag)di}dg = )‘irk(xay) (30)
fh($,y)hT($,y)Ikd$dy = )‘i-[k

for k=1...K. The second of the normal equations (30)
can be written as

M, =MD, k=1...p (31)
where M is the K-dimensional square symmetric matrix
[ h(z,y)h" (z,y)dzdy. Since this is a (finite-dimensional)
symmetric eigenvalue problem, there exists a unique de-
composition of M of the form

M=UANUT (32)

with UTU = Iy, A = diag{\}... X2} and U = [,..., ).

We are now left with the first equation in (30) in order
to retrieve ri(z,y). However, instead of solving that di-
rectly, we use the adjoint operator H* to map the basis
of R¥ onto a basis of a p-dimensional subspace of £2 via
H*I}, = M\gry. Making the notation explicit we have

L

)\k hT(ma y)Ik

rr(2,y) = k=1...p. (33)

Remark 3 (Regularization) In the computation of H*,
the sum 1is effectively truncated at k = p < K, where the di-
mension K depends upon the amount of data acquired. As
a consequence of the properties of the SVD, the solution ob-
tained enjoys a number of regularity properties. Note that the
solution is not the one that we would have obtained by first
writing v using o truncated orthonormal ezpansion in L2, then
expanding the kernel h in (1) in series, and then applying the
finite-dimensional version of the orthogonal projection theo-
rem.

Remark 4 (Dimensions) Just to give the reader an idea
on the dimensions at play, usually the normal equations are

solved locally in a patch around each point in the image. In
order for the invariance assumption on the kernel to hold, such
windows are usually kept of sizes M x N in the order of 3 x 3
pizels to 10 x 10 pizels. Typically between L = 2 and L = 4
images are acquired. We choose N = M =5 and L = 2,
thereby having to compute the SVD of matrices of size 50. All
these SVDs can be pre-computed.

We now have all the ingredients to write the recipe.

2.5 Blind deconvolution algorithm

1) Construct the matrix!?
M) = [ 1@, (@, )dady.

2) Compute its SVD: M(c) = UA2UT. Let
H(0)=I1;-U]U,

where U, is the matrix built with the first p columns
of U.

3) Minimize the norm'® |H+(0)I| with respect to the
depth of the patch o. Call the minimizer &.

4) Restore the radiance!

ﬁ(.’l:, y) = h&T(xa y)U)\zm;

where XAiny = A1, .. ST
Notice that the steps 1) —2) can be pre-computed off-line
for any given value of o.

Remark 5 (Tradeoffs) There is a tradeoff between mem-
ory and computational speed. Choosing a local descent algo-
rithm in 8), one only needs to store one K x K matriz, but then
needs to compute HJ‘(a) at each step of the iteration. Opting
for a discrete search, instead, one needs to store HJ‘(ai) for a
number of depths o;, but then only the product H*(o:)I needs
to be computed at each depth.

Following the derivations in the previous section, as a
consequence of proposition 1 and the properties of the
SVD, we can conclude that

12For certain families of kernels, such as Gaussian ones, the inte-
gral can be computed in closed-form without therefore any approx-
imation.

13There are a number of ways in which this can be done. Al-
though there exists no closed-form solution, local gradient meth-
ods, tangent methods, Newton methods are all viable possibilities.
Another alternative consists in pre-computing H+(¢) for a number
of os (however many are necessary in order to achieve the desired
resolution in depth), and then simply compute |H-(o;)I| for all 4.
Choose the ¢ that leads to the smallest norm, call § = ;.

141f all we are concerned with is the depth o, this step can be
omitted.



Proposition 2 The algorithm described in 1)-4) con-
verges to a local extremum of the problem (3) for an in-
variant kernel and a quadratic cost function.

Remark 6 (Observability) The conditions under which
shape can be uniguely reconstructed from blurred images de-
pend upon the radiance of the sceme. As it stands, the algo-
rithm described in section 2.5 seems to return an answer at
every point, regardless for the radiance. However, in the pres-
ence of radiances which are not “sufficiently exciting” (see [13]
for rigorous definitions and characterizations), step 3) of the
algorithm 2.5 will return a flat profile that is independent of
o. This is easy to test, and it is possible to associate the local
curvature of the function ¢(o) = |H (0)I| with a reliability
measure for the localization of depth, as in figure 6.

It would be desirable if such conditions could be stated di-
rectly in terms of the data I, so as to avoid useless computa-
tions at points where depth cannot be recovered (for instance
where the radiance is harmonic). A thorough analysis of this
aspect of the algorithm is still under way.

3 Experiments

In this section we describe an implementation of the al-
gorithm presented in section 2.5 for the case of Gaus-
sian kernels. We choose Gaussians not because they are
a good model of the imaging process, but because they
make the analysis and the implementation of the algo-
rithm straightforward. The algorithm does not depend
upon this choice, and indeed we are in the process of
building realistic models for the kernels of commercial
cameras.

3.1 Gaussian kernels

One of the simplest families of kernels are the Gaussians,
which have the property of being invariant with respect
to convolution. It turns out that this choice is often used
in the literature. We recall that the kernel A is a (column)
vector obtained by stacking the kernels hJ, (z;,y;) on top
of each other, so we only need to specify the generic ker-
nel, which is

1 1 @i—2)? 4 —v)?
2 w(ug,0)2

hul (xiayjaxa y) = \/—76 (34)

2rk(uy, o)

= ho(z; — z,y; —y,w) (35)

where the “blur radius” k depends both on the focal
length of image [, u;, and on the depth of the patch be-
ing considered, 0. We organize the kernels into a vector,
compute the matrix M (o) in closed form and evaluate it
off-line for 200 values of . We then compute their SVD
and follow the steps of the algorithm 2.5.

Remark 7 (User’s choices) Of course, real scenes do not
satisfy the equifocal assumption if not locally away from dis-
continuities. Therefore, we run the algorithm on small patches

around each point on the image, content with having consis-
tent results only away from discontinuities'. Since the choice
of a family of kernels comes from a model of the optics of the
camera, the size of the patches is the only choice involved in
implementing our algorithm. We choose it to be 5 X 5 pizels,
as a tradeoff between the validity of the equifocal assumption
and compensation for noise.

Having pre-computed H* (o) at 200 values of o, the al-
gorithm requires 510KFlops at each point. Since these
operations are all independent, and therefore highly par-
allelizable, there is potential for real-time operation on
commercial hardware.

A detailed experimental analysis of the performance
of the algorithm is best carried out on carefully controlled
simulations. However, for the purpose of illustration of
the functioning of the algorithm on real images, we show
the results on sets of images provided to us by Watan-
abe and Nayar (figures 1 and 6). Although no rigorous

b
Figure 1: (Top) Two images taken with different focal
lengths, courtesy of Watanabe and Nayar [18]. The two fo-
cal planes are very close so the difference between near (left)
and far (right) is barely visible. (Bottom) Unaltered depth
profile as estimated by the algorithm. Grayscale values are
proportional to the depth of the scene relative to the first fo-
cal plane. Although we have no rigorous evaluation of the
estimation error, the qualitative shape of the scene is visible.

ground truth is available, the qualitative shape of the

15Extending the algorithm to discontinuities is part of our re-
search agenda.



scene seems to have been captured. In this experiment,
the algorithm runs on 2 images, with patches of dimension
5 x 5. These conditions are challenging for the algorithm,
since it forces the rank of the orthogonal projector H-
to be at most 50. However, the behavior of the algo-

Figure 2: Smoothed mesh of estimated depth for the scene in
figure 1. Two images have been used.

rithm substantially improves when more than two images
are available. As shown in figure 3, the average error in a
sequence of 50 trials decreases significantly with the num-
ber of input images. Furthermore, for a constant number

Average Error (absolute value) and Standard Deviation

-0.04 - L -
2 3 4 5

Number of Images
Figure 3: Average reconstruction error (in absolute value) as
a function of the number of input images for 50 trials of the
same experiment. Performance improves dramatically with
more than 2 images.

of images, the average reconstruction error is not uni-
form across the depth field, as shown in figure 4. Just to
give the reader an idea on the profile of the residual cost
function, which is minimized with respect to the depth of
the patch at each step, we report an example in figure 5,
where it can be seen that the residual is neither smooth

L L L L L L L L L L L
1.6 1.7 1.8 1.9 2

beptn
Figure 4: Average reconstruction error as a function of depth
for 50 trials of the same experiment. Three blurred images
have been used.

nor convex. In figure 6 we show the reconstruction of a
real scene together with a measure of its reliability.

Cross: True Minimum  Square: Minimum Found Stars: Scene Planes on Focus
14 T T T T T T T T T

Residue Value

o L L L
1 1.1 1.2 1.3 1.4

.
1.5
Depth

1.6 1.7 1.8 1.9 2

Figure 5: Example of residual to be minimized |[H*(o)I|: no-
tice that it is non-smooth and non-convex. The true minimum
- indicated by a cross - and the estimated one - indicated by a
square - coincide. Asterisks indicate the focal planes of image
data.

4 Conclusions

We have proposed a solution to the problem of recon-
structing the shape and radiance of a scene when using
a quadratic cost function under invariant integral imag-
ing models. Rather than approximating the continuum
with a discretization, in our approach the size of the mea-
surement array naturally imposes regularity in the solu-
tion, which is obtained in infinite-dimensional space us-
ing a functional singular value decomposition. We use the
structure of maps between (finite and infinite-dimensional)
Hilbert spaces, which makes the analysis simple and in-
tuitive. Our solution results in a straightforward and ef-
ficient algorithm that does not involve any tuning, choice



of basis, or discretization: all of these are determined by
the data.
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Figure 6: (Top) Two images taken with different focal
lengths, courtesy of Watanabe and Nayar [18]. The differ-
ence between the two images is barely visible, since the two
focal planes are very close. (Center) Reconstructed (relative)
unaltered depth profile. (Bottom) reliability parameter com-
puted from the local curvature of the residual function around
its minimum. As it can be seen, the estimates of depth cor-
responding to the uniform region of the background have a
high uncertainty associated to them. Note that at occluding
boundaries uncertainty is judged to be low by the algorithm,
although the actual estimates are unreliable due to the viola-
tion of the equifocal assumption.



