
The Golem Group/University of
California at Los Angeles

Autonomous Ground Vehicle in
the DARPA Grand Challenge

Richard Mason, Jim Radford, Deepak Kumar,
Robert Walters, Brian Fulkerson,
Eagle Jones, David Caldwell, Jason Meltzer,
Yaniv Alon, Amnon Shashua, Hiroshi Hattori,
Emilio Frazzoli, and Stefano Soatto
The Golem Group
911 Lincoln Boulevard #7
Santa Monica, California 90403

Received 13 December 2005; accepted 12 June 2006

This paper presents the Golem Group/University of California at Los Angeles entry to
the 2005 DARPA Grand Challenge competition. We describe the main design principles
behind the development of Golem 2, the race vehicle. The subsystems devoted to obstacle
detection, avoidance, and state estimation are discussed in more detail. An overview of
vehicle performance in the field is provided, including successes together with an analy-
sis of the reasons leading to failures. © 2006 Wiley Periodicals, Inc.

1. OVERVIEW

The Golem Group is an independent team of engi-
neers formed to build a vehicle for the 2004 DARPA
Grand Challenge �DGC�. For the 2005 DARPA Grand
Challenge, the Golem Group and the University of
California at Los Angeles �UCLA’s� Henry Samueli
School of Engineering and Applied Science joined
forces to build a second autonomous vehicle, Golem
2 �see Figure 1�. Performance highlights of this ve-
hicle are summarized in Table I.

The aspect of the DGC was to require high-speed
autonomous driving in the unstructured or semi-
structured environment typical of rough desert trails.
Global positioning system �GPS� waypoint following
was necessary, but not sufficient, to traverse the route,

which might be partially obstructed by various ob-
stacles. In order to have a good chance of completing
the course, vehicles needed to drive much faster, yet
have a lower failure rate, than previously achieved in
an off-road environment without predictable cues.
High-speed driving over rough ground posed a vi-
bration problem for sensors.

1.1. Relation to Previous Work

Prior to the DGC, unmanned ground vehicles had
driven at very high speeds in structured paved en-
vironments �Dickmanns, 1997, 2004�. Other vehicles
had operated autonomously in unstructured off-
road environments, but generally not at very high
speed. Autonomous Humvees using ladar �laser de-

• •

Journal of Field Robotics 23(8), 527–553 (2006) © 2006 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20137

tection and ranging� to detect obstacles in an off-
road environment have been developed at the Na-
tional Institute for Standards and Technology
�Coombs, Murphy, Lacaze & Legowik, 2000; Hong,
Shneier, Rasmussen & Chang, 2002�. The U.S. Army
Experimental Unmanned Vehicle �Bornstein & Shoe-
maker, 2003� also used ladar to detect obstacles and
could navigate unstructured rough ground at some-
what over 6 km/h. Rasmussen �2002� used a combi-
nation of ladar and vision to sense obstacles and
paths in off-road environments. The Carnegie Mel-
lon University �CMU� Robotics Institute had per-
haps the most successful and best-documented ef-
fort in the first DGC, building an autonomous
Humvee which was guided by ladar �Urmson, 2005;
Urmson et al., 2004�.

Golem 1, our own first DGC entry, used a single
laser scanner for obstacle avoidance. Golem 1 trav-
eled 5.1 miles in the 2004 Challenge �see Figure 2�,
before stopping on a steep slope because of an ex-
cessively conservative safety limit on the throttle
control. This was the fourth-greatest distance trav-
eled in the 2004 DGC; a good performance consider-
ing Golem 1’s small total budget of $35,000.

Our attempts to improve on the performance of
previous researchers were centered on simplified
streamlined design—initially in order to conserve
costs, but also to enable faster driving by avoiding
computational bottlenecks. For example, we relied

Figure 1. Golem 2 driving autonomously at 30 miles per
hour.

Table I. Golem Group/UCLA performance in the 2005 DARPA Grand Challenge. NQE=National Qualifying Event;
GCE=Grand Challenge Event; CMU=Carnegie Mellon University; IVST=Intelligent Vehicle Safety Technologies.

NQE Performance Highlights

9 min 32 s NQE run clearing
49/50 gates and 4/4 obstacles

Only Stanford, CMU, and IVST made faster runs
clearing all obstacles

Only Stanford and CMU made faster runs clearing
at least 49 gates

12 min 19 s NQE run clearing
50/50 gates and 5/5 obstacles

Only Stanford, CMU, Princeton, and Cornell
made faster flawless runs

GCE Performance Highlights

Peak speed �controlled driving� 47 mph
Completed 22 race miles in 59 min 28 s
Anecdotally said to be fastest vehicle reaching 16-mile DARPA checkpoint
Crash after 22 miles due to memory management failure

Figure 2. Golem 1 negotiating a gated crossing in the
2004 DARPA Grand Challenge. �Photos courtesy of
DARPA.�

528 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

primarily on ladar for obstacle avoidance, but unlike
the majority of ladar users, we did not attempt to
build a three-dimensional �3D� model of the world
per se. Instead, we only attempted to detect the most
important terrain features and track the locations of
those on a two-dimensional �2D� map. Golem 1,
with its single ladar scanner, may have gone too far
in the direction of simplicity, and Golem 2 carried
multiple ladars to better distinguish slopes and hill-
sides. Ladar obstacle detection is further discussed
in Section 3.

As another example of simplification, our path
planning process considers possible trajectories of
the truck as simple smooth curves in the 2D plane,
with curvature of the trajectory as a measure of driv-
ability, and distance to the curve as a proxy for dan-
ger of collision. We do not consider obstacles in a
configuration space of three dimensions, much less
six dimensions. Our approach might be inadequate
for navigating a wholly general mazelike environ-
ment, but more importantly, for our purposes, it
gives fast results in the semistructured case of a par-
tially obstructed dirt road. Trajectory planning is dis-
cussed further in Section 4.

We did experiment with some vision systems in
addition to ladar. Mobileye Vision Technologies, Ltd.
provided Golem 2 with a monocular roadfinding
system, which is discussed in Section 6.1 and also in
Alon, Ferencz & Shashua �2006�. This could be con-
sidered as extending the cue-based paved-
environment work of Dickmanns, and of Mobileye,
to an unpaved environment. Experiments with a
Toshiba stereo vision system are described in Section
6.2.

2. VEHICLE DESIGN

Each of our vehicles was a commercially available
pickup truck, fitted with electrically actuated steering
and throttle, and pneumatically actuated brakes.

We felt it was very important that the robot re-
mained fully functional as a human-drivable vehicle.
Golem 1 seats two people while Golem 2 seats up to
five. A passenger operated the computer and was re-
sponsible for testing, while the driver was respon-
sible for keeping the vehicle under control and stay-
ing aware of the environment. During testing, it was
very convenient to fluidly transition back and forth
between autonomous and human control. Individual
actuators �brake, accelerator, and steering� can be en-

abled and disabled independently, allowing isolation
of a specific problem. Having a human “safety
driver” increased the range of testing scenarios that
we were willing to consider. Finally, having a street-
legal vehicle greatly simplified the logistics.

Accordingly, a central principle behind actuation
was to leave the original controls intact, to as great an
extent as possible, in order to keep the vehicle street
legal. The steering servo had a clutch, which was en-
gaged by a pushrod that could be reached from the
driver’s seat. The brakes were actuated by a pneu-
matic cylinder that pulled on a cable attached—
through the firewall—to the back of the brake pedal.
The cable was flexible enough to allow the driver to
apply the brakes at any time. The pressure in the cyl-
inder could be continuously controlled via a voltage-
controlled regulator. A servo was attached directly to
the steering column.

A second design aim was to keep the computa-
tional architecture as simple as possible. The core
tasks of autonomous driving do not require a large
amount of computational power. We worked to keep
the software running on a single laptop computer.
Unburdened by a rack full of computers, we were
able to retain working space in the vehicle, but more
importantly, any team member could plug in their
laptop with a universal serial bus �USB� cable and run
the vehicle. A block diagram of the architecture is
shown in Figure 3.

2.1. Sensors

The sensors mounted on Golem 2 for vehicle state
estimation included a Novatel ProPak LB-Plus dif-
ferential GPS receiver with nominal 14-cm accuracy
using OmniStar HP correction; a BEI C-MIGITS in-
ertial measurement unit �IMU�; a custom Hall en-
coder on the differential for odometry with approxi-
mately 10-cm accuracy; and a 12-bit encoder for
measuring the steering angle. Vehicle state estima-
tion is discussed further in Section 5.

The sensors used for terrain perception included
a Sick LMS-221 ladar, which swept a 180° arc in front
of the vehicle—measuring ranges up to 80 m at 361
samples/sweep, 37.5 sweeps/s, with the samples in-
terleaved 0.5° apart. There were also four Sick LMS-
291 ladars, similar in most respects except that they
each swept a 90° arc while collecting 181 samples/
sweep, 75 sweeps/s. The arrangement and function
of the ladars is further discussed in Section 3. A mo-
nocular camera system from Mobileye, used for road

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 529

Journal of Field Robotics DOI 10.1002/rob

finding, was mounted at the “hood ornament” posi-
tion, while a stereo system from Toshiba looked out
through the windshield.

The On-Board Diagnostics Bus II provided lim-
ited access to vehicle data; it was mainly used to
control the vehicle’s horn.

2.2. Software

In order for multiple developers to work in parallel,
it was plain that we needed a system which would
give us the freedom to write code in diverse places,
such as deserts and stadium parking lots, while still

Figure 3. Block diagram of the Golem vehicle architecture.

530 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

maintaining all features of a revision control system.
We found this in the peer-to-peer revision control
system, darcs �Roundy, 2005�, which maintains re-
positories containing both the source code and a
complete history of changes, and allows a developer
to push or pull individual patches from one source
repository to another. Using darcs, we achieved a
very tight development-test cycle despite our di-
verse working environments.

The software ran on a Linux laptop and was di-
vided into two main applications. The program
which made decisions based on sensor input, con-
trolled the actuators, and recorded events is known
as golem. It had no connection to the visualization
software dashboard, other than through the log
files it created, which were human-readable plain
text. Besides being written to disk, these log files
could be piped directly from golem to dashboard,
for realtime visualization or replayed offline by
dashboard at a later time.

Commands could be typed directly to golem at
the console or received from dashboard over a user
datagram protocol �UDP� port. The commands were
designed to be simple and easily typed while driv-
ing in a moving vehicle on a dirt road. While this
was convenient, it might have been even more con-
venient to be able to use an analog control, or at least
the arrow keys, to adjust control parameters in real
time.

2.2.1. Golem

The main software for data capture, planning, and
control, golem consisted of two threads. The main
thread was completely reactionary and expected to
be real time; it took in data from the sensors, pro-
cessed them immediately, and sent commands to the
actuators. The low-level drivers, the state estimators,
ladar and obstacle filters, the road/path follower, the
velocity profiler, and the controllers all ran in this
thread. A second planning thread was allowed to
take more time to come up with globally sensible
paths for the vehicle, based on snapshots of the ac-
cumulated sensor data received at the time the
thread was initiated.

Golem could be driven by real-time sensor data,
by a simple simulator, or from previously recorded
log data. The simulator was invaluable for debug-
ging the high-level behaviors of the planner, but its
models were not accurate enough to tune the low-
level controllers. The replay mode allowed us to de-

bug the ladar obstacle filters and the state estimators
in a repeatable way, without having to drive the ve-
hicle over and over.

2.2.2. Dashboard

Dashboard was created from scratch using C,
Gtk+2, and OpenGL, to be an extensible visualiza-
tion tool which would allow us to play back our log
files and learn from their content. A typical screen-
shot is shown in Figure 4.

The core of dashboard consists of a log file
parsing library, an OpenGL representation of the
world, and a replaying mechanism which controls
the flow of time. Dashboard takes a log file from
disk, standard input, or a UDP network connection,
as input, and uses rules described in a configuration
file to convert human-readable log lines into an in-
ternal representation that is easy for other program
components to index and access. Log lines are
parsed as soon as they are available, by the Perl
compatible regular expression library. The internal
representation is displayed for the user through the
OpenGL window. The user has the ability to play log
files, pause them, rewind, fastforward, measure and
move around in the rendered world, and selectively
view sensor visualizations of interest. This proved
indispensable in our development effort.

The data are visualized in a number of different
ways, as we found that no one representation was
suitable for all debugging situations. The main sec-
tion is a graphical representation of the world which
is viewable from a 2D top-down point of view and
also from a 3D point of view. It is rendered using
OpenGL. There is also a section that displays inputs
as textual data for precise readings. Yet another sec-
tion contains a set of user programmable graphs. Be-
cause of the intentionally generic internal represen-
tation, adding a new element to the visualization,
such as data from a new sensor, is a very simple
process.

3. LADAR OBSTACLE DETECTION

We considered a nontraversable obstacle to be an ob-
ject or ground feature which: �a� Represented a rapid
apparent change in ground elevation, with a slope
magnitude greater than 30°, or an actual discontinu-
ity in ground surface; �b� presented a total change in
ground height too large for the vehicle to simply roll

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 531

Journal of Field Robotics DOI 10.1002/rob

over; and �c�, if discontinuous with the ground, was
not high enough for the vehicle to pass under. This
was an adequate definition of an “obstacle” for the
DARPA Grand Challenge.1 Since obstacles result
from changes in ground elevation, the most critical
information comes from comparisons of surface mea-
surements adjacent in space.

We did not use sensor data integrated over time
to build a map of absolute ground elevation in the
world frame, on the hypothesis that this is unneces-
sarily one step removed from the real information of
interest. Instead, we tried to directly perceive, or in-

fer, from instantaneous sensor data, regions of rapid
change in ground elevation in the body-fixed frame,
and then maintain a map of those regions in the
world frame. We did not concern ourselves with any
ground slope or surface roughness that did not rise to
the threshold of making the ground nontraversable.

3.1. Ladar Geometry

We used Sick LMS-291 and LMS-221 laser scanners
as our primary means of obstacle detection. It is in-
teresting that the many DGC teams using 2D ladars,
such as these, found a wide variety of ways of ar-
ranging them. These ladars sweep a rangefinding la-
ser beam through a sector of a plane, while the plane
itself can be rotated or translated, either by vehicle
motion or by actuating the ladar mount. The choice

1Ideally, one would like to classify some objects, such as plants, as
“soft obstacles” that can be driven over even if they appear to
have steep sides. Other hazards, such as water or marshy ground,
cannot be classified simply as changes in ground elevation. But
this increased level of sophistication was not necessary to com-
plete the DGC and remains a topic of future work for us.

Figure 4. Dashboard visualization of Golem 2 entering a tunnel during a NQE run.

532 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

of plane or, more generally, the choice of scan pat-
tern for any beam-based sensor, represents a choice
between scanning rapidly in the azimuthal direction,
with slower or sparser sampling at different eleva-
tion angles, or the reverse.

A ladar scanning in the vertical plane has the
significant advantage that the traversability of the
scanned terrain is apparent from a single laser
sweep. For example, it is easily determined from the
single vertical-plane scan in Figure 5 that the ground
is continuous, flat, and traversable from a few feet
before the truck, up to the point where there is a
nontraversable vertical surface taller than the vehi-
cle’s wheels.

In our case, a single-laser sweep takes 1/75 s
and individual sample points are separated by
1/13,575 s. On this time scale, it is not likely that
motion or vibration of the vehicle could distort the
vertical scan sufficiently to alter this interpretation
�make the traversable ground appear nontraversable
or vice versa�. Similarly, while small errors in the
estimated pitch of the vehicle would induce small
errors in the estimated location of the nontraversable
obstacle, it is not likely that they could cause a major
error or prevent the perception of an obstacle in the
right approximate location. Against these advan-
tages is the obvious drawback that a vertical slice
only measures the terrain in a single-narrow direc-
tion. Even if there are multiple vertical scanners
and/or the vertical plane can be turned in different
directions, the vehicle is likely to have a blinkered
view with sparse azimuthal coverage of the terrain,
and may miss narrow obstacles.

Conversely, a scan plane which is horizontal, or
nearly, horizontal, will provide good azimuthal cov-
erage, and clearly show narrow obstacles, such as
fenceposts and pedestrians, but the interpretation of

any single-horizontal scan in isolation is problem-
atic. Lacking measurements at adjacent elevation
angles, one cannot determine if a return from a
single-horizontal scan is from a nontraversable steep
surface or from a traversable gently sloping one.
Therefore, the information from multiple horizontal
scans must be combined; but since the crucial com-
parisons are now between individual measurements
taken at least 1/75 s apart instead of 1/13,575 s
apart, there is a greater likelihood that imperfectly
estimated motion or vibration will distort the data.
Small errors in pitch, roll, or altitude could cause the
vehicle to misapprehend the height of a ground con-
tour and lead to a totally erroneous classification of
the terrain as traversable or nontraversable.

Our approach was to use a complementary ar-
rangement of both vertical and nearly horizontal la-
dars. On the Golem 2 vehicle, there are two nearly
horizontal ladars and three vertically oriented ladars
mounted on the front bumper. The idea is that the
vertically oriented ladars are used to form a profile
of the general ground surface in front of the truck, in
the truck body-fixed frame �as opposed to a world-
fixed frame�. The ground model we fit to the data
was piece-wise linear in the truck’s direction of mo-
tion, and piece-wise constant in the sideways direc-
tion. The model interpolated the most recent avail-
able ladar data. In locations beyond the available
data, the ground was assumed to have constant alti-
tude in the body-fixed frame.

The apparent altitude of returns, from the nearly
horizontal ladars relative to the ground model, was
then computed to see if those returns were: �a� Con-
sistent with a traversable part of the ground model;
�b� consistent with a nontraversable part of the
ground model; �c� apparently from an elevation
moderately higher than the notional ground; or �d�
apparently from an object so far above the notional
ground that the vehicle should be able to pass under
it. In either Case �b� or �c�, the ladar return is classi-
fied as arising from a possible obstacle; after several
of these returns are received from the same location
at different vantage points, the presence of an ob-
stacle is confirmed. In practice, an object, such as a
parked car, will be represented as a cluster of adja-
cent obstacles.

For example, Figure 6 illustrates ladar data from
a portion of the NQE course. The returns from the
horizontally oriented ladars indicated a long straight
feature crossing in front of the vehicle, and two
smaller features, or clusters, of returns. The three

Figure 5. Returns from a ladar oriented in a vertical
plane.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 533

Journal of Field Robotics DOI 10.1002/rob

vertical ladars measure the ground profile in three
directions, and reveal that the truck is driving to-
ward the foot of an upward incline. The “long
straight feature” is merely a surface contour of the
upward-sloping ground, and therefore, since the in-
cline is not too steep, should not be considered an
obstacle. The two smaller clusters of returns, how-
ever, appear to be at a significant altitude above the
notional ground, and are interpreted as nontravers-
able obstacles. In fact, these are traffic cones.

The entire process is O�n� in the number of ladar
measurements n, with a large array providing O�1�
access to accumulated obstacle detections in a given
location. A many-to-one mapping between latitude-
longitude coordinates and cells of the array is
needed, with the properties that: �a� Each connected
preimage of an array cell is at least approximately
the same physical size, and �b� any two distinct re-
gions which are mapped to the same array cell are
sufficiently far apart that they will not both need to
be considered within the planning horizon of the ve-
hicle. A simple method, which works everywhere
except in the immediate vicinity of the poles, is to
define a latitude-dependent cell size, so that a differ-
ent integral number of array cells correspond to a
fixed extent of longitude at each latitude. It is accept-
able that fewer array cells are needed further from
the equator and, therefore, some array cells will
have more preimage locations than others. The
method could be adjusted to deal with the polar
neighborhoods by exception.

Once confirmed, obstacles persist unless and un-
til a period of time �e.g., 1 s� passes with no ladar
returns detected from that location, in which case
the obstacle expires. This enables the system to re-
cover from false positive detections, and also gives a

rudimentary capability to deal with moving ob-
stacles, since obstacles can disappear from one place
and be redetected somewhere else. However, we did
not attempt to form any velocity estimate of moving
objects, and the robot generally operates on the as-
sumption that other objects have zero velocity in the
world frame.

In order to save computational time and
memory, we did not wish to track obstacles which
were well outside the DGC course boundaries. Off-
course obstacles should be irrelevant to the vehicle’s
planning problem, and regularly checking to see
whether they have expired should be a waste of
time. Therefore, nontraversable surfaces off the
course were not classified as obstacles, as long as the
vehicle itself remained on the course. However, sen-
sor measurements indicating off-course obstacles
were allowed to accumulate, so that if the vehicle
departed from the course boundaries for any reason,
and was required to consider off-course obstacles as
significant, these obstacles would pass the confirma-
tion threshold very quickly.

3.2. Empirical Ladar Detection Results

The NQE obstacle course provided a uniform test
environment with well-defined obstacles, of which
many different sensor recordings presumably now
exist, so it may be useful to report our ladar classifi-
cation results during traversals of this obstacle
course. The ranges at which the intended obstacles
�parked cars, tire stacks, and tank traps� were recog-
nized as nontraversable by the vehicle are shown in
Figure 7.

DARPA lined the boundaries of the course with
traffic cones—which the vehicle, relying on its own
GPS localization measurements, might consider to
lie either inside or outside the course boundary.
Those traffic cones considered to be on the course
were classified as nontraversable at ranges indicated
in Figure 8. Of the four outliers on the low end
�cones which were not identified until they were
within less than 20 m range�, two cones were oc-
cluded from early view by other objects, and two
were at the base of an incline and presumably could
not be detected until the vehicle crested the top of
the slope and headed down.

There were zero-false negatives. Every inten-
tional obstacle and cone on the course was correctly
classified and, once classified, was persistently re-

Figure 6. Ladars distinguish obstacles from the ground
surface.

534 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

garded as an obstacle as long as it remained within
the 180° forward sensor arc of the vehicle.

There were, however, a considerable number of
false positives, classifying terrain which was travers-
able as nontraversable. If these false obstacles ap-

peared in the path of the vehicle, the vehicle would
of course try to plan a new trajectory around them,
and reduce speed if necessary. However, the false
obstacles not did persist as the vehicle approached.
Instead, all false obstacles eventually expired; leav-

Figure 7. Histograms of NQE obstacles arranged by range of first detection.

Figure 8. Histogram of NQE traffic cones arranged by range of first detection.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 535

Journal of Field Robotics DOI 10.1002/rob

ing the vehicle free to drive over that terrain. The
ranges at which false obstacle detections first ap-
peared and then expired are shown in Figure 9. The
mean range at first appearance was 30.5 m; the
mean range at expiration was 20.5 m.

Some of the false positives coincided with ir-
regularities in the ground surface, or debris, strewn
on the course. In hindsight, it appears likely that a
large percentage of the false positives were caused
by reflective markings on the edges of the speedway
track; causing off-axis reflections of the laser beams
and confusing the ladar range measurement. We in-
fer this from the location of the false positives, but
have yet to examine the phenomenon through delib-
erate experiment. Similar problems occurred with
reflective road markers during the Grand Challenge
Event �GCE�.

False positives very seldomly occurred when the
vehicle was traveling on a continuous unmarked
road surface, e.g., the asphalt track at the NQE, or a
dirt road in the GCE. The main NQE performance
impact of the false positives was to cause the vehicle
to hesitate at transitions crossing the marked edge of
the asphalt. However, the vehicle still managed to

maintain a high average speed and complete the ob-
stacle course in competitive times. �See Table I.�

4. AVOIDER

We accomplished vehicle trajectory planning using a
custom recursive algorithm described in this section.
In keeping with the general philosophical approach
of the team, we attempted to design for a minimal
computation footprint, taking strategic advantage of
heuristic rules and knowledge implicit in the
DARPA-provided route definition data file �RDDF�
route. The method bears a resemblance to the genera-
tion of a probabilistic roadmap �Kavraki, Svestka,
Latombe & Overmars, 1996� or a rapidly exploring
random tree �Frazzoli, Dahleh & Feron, 2002; LaValle,
1998�, in that we generate a graph of vehicle configu-
rations connected by smooth trajectories, but instead
of generating new configurations on the boundary of
an expanding graph, we recursively generate trajec-
tory midpoints in search of the best feasible path con-
necting a start configuration and end configuration.

In our search for high efficiency, in practice, we

Figure 9. False positive events in which obstacles were “detected,” but subsequently rejected.

536 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

forfeited any guarantee of the global optimality of
our solution paths and even predictable convergence
conditions for the routine. However, we found that in
the vast majority of cases, traversable paths are rap-
idly found without burdening the processing re-
sources of the vehicle.

The stage for the planning algorithm is a Carte-
sian 2D map in the vicinity of the initial global coor-
dinates of the vehicle, populated with a number of
discrete obstacles. The obstacles are represented as
point hazards that must be avoided by a particular
radius, or as line segments that can be crossed in only
one direction. Point obstacles are centered on loca-
tions in the plane that have been identified as non-
traversable by the ladar system. The buffer radius
surrounding each point obstacle includes the physi-
cal width of the vehicle and, additionally, varies
based on the distance from the vehicle to the hazard.
A real object, such as a wall or car, is represented by
a cluster of such points, each with its associated ra-
dius. Line segment obstacles arise from the RDDF,
which specifies corridor boundaries for the vehicle.
The vehicle trajectory is a single curve describing the
motion of the vehicle frame in the plane.

Our task is to find a drivable path from an initial
configuration to a destination configuration that does
not encroach on any obstacle.2 The destination is
taken to be the center of the RDDF corridor at some
distance ahead of our sensor horizon. The simplest
and presumably most frequently occurring scenario
will require the vehicle to simply drive forward
from/to without performing any evasive maneuvers.
We represent this scenario with a directed acyclic
graph containing two nodes and a single connecting
edge. This choice of data structure later allows us to
take advantage of a topographically sorted ordering,
that enables the least cost traversal of the graph to be
found in linear time �O�N edges��. Each node in the
graph is associated with a possible configuration of
the vehicle, and each edge is associated with a di-
rected path connecting a starting configuration to a
target configuration. At all times, care is taken to
maintain the topological correspondence between the
nodes in the graph and the locations in the local map.

After initialization we enter the recursive loop of
the algorithm, which consists of three stages:

1. Graph Evaluation,

2. Path Validation, and
3. Graph Expansion.

This loop is executed repeatedly until a satisfac-
tory path is found from/to, or until a watchdog ter-
mination condition is met. Typically, we would ter-
minate the planner if a path was not found after
several hundred milliseconds.

Figures 10–12 offer a visualization of the path
planning process. Nodes are indicated by bright
purple arrows, while considered trajectories are
drawn as purple lines.

In Graph Evaluation, trajectory segments and
cost factors are computed for all new edges in the
graph. Each trajectory segment is calculated from the
endpoint node configurations that it connects, and af-
terward is checked for possible obstacle collisions.
There may be a large number of different trajectory
segments to check and a large number of obstacles
currently being tracked, bearing in mind that a single
real object of any significant horizontal extent will be
tracked as a cloud of smaller obstacles which are close
together. In order to collision check efficiently, we use
a wavefront propagation method to create a map in-
dicating the approximate distance from each point to
the nearest obstacle. Once this map is produced, tra-
jectories can be checked rapidly against it for obstacle
collisions. If no obstacles are intersected, the cost of
traversal is generated from an integral of the instan-

2At this time, we have no classification of obstacles by impor-
tance. All obstacles are regarded as equally nontraversable and
equally to be avoided.

Figure 11. Visualization of Avoider graph as the vehicle
navigates around a tank trap obstacle during the NQE.

Figure 10. Visualization of Avoider algorithm at GCE
start line.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 537

Journal of Field Robotics DOI 10.1002/rob

taneous curvature along the trajectory. In our expe-
rience, the dynamic feasibility of a path can be ad-
equately characterized by this single value.

The loop continues with Path Validation. The op-
timal path over the entire explored graph is found
rapidly by reference to the topological sort of the
nodes. If the cost is satisfactory, the loop ends and a
refinement procedure begins. This refinement pro-
cess consists of a number of heuristic modifications
that add nodes and edges to the graph to “smooth”
calculated trajectories. As a final step, a velocity pro-
file is computed along the solution, so that the vehi-
cle’s speed will be consistent with the curvature of the
path and with any DARPA-imposed speed limits.
The planning thread then updates the desired trajec-
tory for the steering and velocity feedback control
system.

If the total cost of the best graph traversal is too
high, we enter the third phase of the algorithm:
Graph Expansion. In this stage, edges that intersect
obstacles are split at the point where a collision
would occur. A number of new nodes are added to
the graph for configurations selected according to
heuristic avoidance conditions. Unevaluated edges
connect these new nodes to the endpoints of the of-
fending trajectory segment. Trajectory segments for
these new edges are then computed when the recur-
sive loop begins again with Graph Evaluation.

In the heuristic techniques applied to select good
target configurations for obstacle avoidance, the po-
sition component of the target configuration is typi-
cally projected perpendicularly out from the obstacle
or interpolated between the obstacle position and the
RDDF boundary. We found that the vehicle heading
was similarly best specified as a function of both the
heading at the collision point and the RDDF-defined
corridor direction.

5. VEHICLE STATE ESTIMATION

The path planning and control subsystems of Golem
2 needed a good estimate of the latitude, longitude,
heading, and the velocity of the vehicle, at a level of
accuracy that was beyond that provided by on-board
sensors, such as the C-MIGITS. Two different state es-
timators were implemented to carry out this task, as
a means to provide analytic redundancy. The first
state estimator used a model analogous to a bicycle
for the vehicle, and relied heavily on the history of
state. The second estimator was based on a six-
degrees-of-freedom �6DOF� rigid-body model, with
the addition of a “soft” nonholonomic constraint on
the vehicle’s velocity enforced as a virtual heading
measurement.

5.1. The Bicycle Estimator

In this section, we will describe the working of the
first estimator, henceforward referred to as the bi-
cycle estimator. The bicycle estimator was a discrete
time-extended Kalman filter �Gelb, 1974; Kalman,
1960; Kalman & Bucy, 1961; Welch & Bishop, 1995�,
with the following inputs:

1. Latitude and longitude from a NovAtel GPS
sensor at 20 Hz.

2. Rear axle velocity at 30 Hz from a custom
Hall sensor system. A set of 16 magnets was
installed on the rear axle. Two detectors were
attached to the vehicle frame and passed a
voltage pulse every time one of the magnets
went past them. The two sensors enabled us
to have a quadrature encoder, i.e., we were
able to distinguish between forward and re-
verse motion. A discrete-time two-state Kal-
man filter used the voltage pulses as input
and estimated the rate of rotation, which in
turn was scaled by the gear ratio and wheel
radius to infer the velocity of the vehicle.

3. Steering angle from an absolute encoder at
20 Hz.

The rear axle velocity and steering encoder were
used as inputs to the bicycle estimator. The state
propagation equations for the bicycle estimator were

x̃k+1 = x̂k + v̂k�t
cos��̂k + �̂k�

cos �̂k
,

Figure 12. Visualization of Avoider graph as the vehicle
navigates around a parked car obstacle during the NQE.

538 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

ỹk+1 = ŷk + v̂k�t
sin��̂k + �̂k�

cos �̂k
,

�̃k+1 = �̂k +
v̂k�t

d
tan �̂k, �1�

where, as described in Figure 13, �x ,y� are the local
Cartesian coordinates of the center of the front axle of
the car. The GPS sensor is located at this point. The
angle � is the heading of the car with respect to the
local x axis. The angle � is the steering angle of the car
as shown in the figure. v is the rear axle velocity of the
car. The quantity d is the distance between the front
and rear axle of the vehicle. A caret over a variable
implies that the variable is an estimate, and a tilde
over a variable implies that the variable is predicted
or propagated forward. The time elapsed since the
last state update is �t. The subscripts in the above
equations refer to successive time indices in state
propagation.

The bicycle model worked well when the steer-
ing angle was small. For large steering angles, how-
ever, the model is inaccurate and leads to a consid-
erable lag between the updated state and the GPS
measurement. The model was also found to be inac-
curate for high velocities, when the vehicle slips at
turns. Thus, the steering angle, �, was calculated as

�̂k = �̂k��measured − �̂bias k� , �2�

where � is the steering calibration factor which tries
to compensate for model inaccuracies. The steering

bias estimate �bias is used to compensate for bias in
the measured steering angle. The rear axle velocity,
v, was calculated as

v̂k = Ŝk�vmeasured� , �3�

where vmeasured is the velocity being input to the bi-
cycle estimator. The slip factor S compensates for
variations in the vehicle’s apparent wheel radius,
and for the fact that the vehicle may be going uphill
or downhill, and tries to estimate slip. However, the
slip factor was not able to track consistently long
periods of slipping.

The state variables were latitude, longitude
�translated to local Cartesian coordinates x,y�, head-
ing �, slip factor S, and either steering bias �bias or
steering calibration factor �.

The steering calibration factor � and the steering
bias cannot be estimated simultaneously, as the state
variables become unobservable. So, the bicycle esti-
mator was operated in the following two modes:

1. When the vehicle was going straight,
��measured � �3°, �bias was estimated.

2. When the vehicle was turning, ��measured �
�3°, � was estimated. This enabled compen-
sating for model inaccuracies in hard turns.

5.2. The Six-Degrees-of-Freedom Estimator

In this section, we describe the design of the 6DOF
estimator. Like the bicycle estimator discussed pre-
viously, the 6DOF estimator is implemented as a
discrete-time extended Kalman filter. The estimator
is designed using fairly standard techniques for
strap-down inertial navigation systems. Since a de-
tailed model of the vehicle’s dynamics is not avail-
able, the filter relies mainly on the rigid-body kine-
matic equations. However, due to the absence of a
magnetometer or other means to measure the vehi-
cle’s orientation, and the need to be able to ensure
convergence of the nonlinear filter without requiring
a initial calibration procedures, knowledge of the ve-
hicle’s dynamics is exploited in the form of virtual
heading measurements from inertial velocity data.

The vehicle is modeled as a rigid body moving
in the 3D space; the state of the vehicle can hence be
described by a position vector p�R3, representing
the location with respect to an Earth-fixed reference
frame of the on-board IMU, a velocity vector v

Figure 13. The “bicycle” model.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 539

Journal of Field Robotics DOI 10.1002/rob

=dp/dt, and a rotation matrix R�SO�3�, where
SO�3� is known as the Special Orthogonal group in
the 3D space, and includes all orthogonal 3�3 ma-
trices with a determinant equal to +1. The columns
of R can be thought of as expressing the coordinates
of an orthogonal triad rigidly attached to the vehi-
cle’s body �body axes�.

The inputs to the estimator are the acceleration
and angular rate measurements from the IMU, pro-
vided at 100 Hz, and the GPS data, provided at
about 20 Hz. In addition, the estimator has access to
the velocity data from the Hall sensors mounted on
the wheels, and to the steering angle measurement.

In the following, we will indicate the accelera-
tion measurements with za�R3, and the angular rate
measurements with zg�R3. Moreover, we use Za to
indicate the unique skew-symmetric matrix, such
that Zav=za�v, for all v�R3. A similar convention
will be used for zg and other 3D vectors throughout
this section.

The IMU accelerometers measure the vehicle’s
inertial acceleration, measured in body-fixed coordi-
nates, minus the gravity acceleration; in other
words,

za = RT�a − g� + na,

where a and g are, respectively, the vehicle’s accel-
eration, and gravity acceleration in the inertial
frame, and na is an additive, white Gaussian mea-
surement noise. Since the C-MIGITS IMU estimates
accelerometer biases, and outputs corrected mea-
surements, we consider na as a zero-mean noise.

The IMU solid-state rate sensors measure the ve-
hicle’s angular velocity, in body axes. In other
words,

zg = � + ng,

where � is the vehicle’s angular velocity �in body
axes�, and ng is an additive, white Gaussian mea-
surement noise. As in the case of acceleration mea-
surements, ng is assumed to be unbiased.

The kinematics of the vehicle are described by
the equations

ṗ = v ,

v̇ = a ,

Ṙ = R	 , �4�

where 	 is the skew-symmetric matrix correspond-
ing to the angular velocity �, and we ignored the Co-
riolis terms for simplicity. As a matter of fact, this is
justified in our application due to the low speed, rela-
tively short range, and to the fact that errors induced
by vibrations and irregularities in the terrain are
dominant with respect to the errors induced by ignor-
ing the Coriolis acceleration terms.

We propagate the estimate of the state of the ve-
hicle using the following continuous-time model, in
which the hat indicates estimates:

ṗ̂ = v̂ ,

v̇̂ = R̂za + g ,

R̂
˙

= R̂Zg. �5�

An exact time discretization of the above, under the
assumption that the �inertial� acceleration and angu-
lar velocity are constant during the sampling time, is

p+ = p + v�t + 1
2 �R̂za + g��t2,

v+ = v + �R̂za + g��t ,

R+ = R exp�Zg�t� . �6�

The matrix exponential appearing in the attitude
propagation equation can be computed using Rod-
rigues’ formula. Given a skew-symmetric 3�3 ma-
trix M, write it as the product M=	
, such that 	 is
the skew-symmetric matrix corresponding to a unit
vector �; then

exp�M� = exp�	
� = I + 	 sin
 + 	2�1 − cos
� .

�7�

The error in the state estimate is modeled as a
nine-dimensional vector �x= ��p ,�v ,���, where

540 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

p = p̂ + �p ,

v = v̂ + �v ,

R = R̂ exp���� . �8�

Note that the components of the vector �� can be un-
derstood as the elementary rotation angles about the
body-fixed axes that make R̂ coincide with R; such a
rotation, representing the attitude error, can also be
written as �R=exp����= R̂TR.

The linearized error dynamics are written as
follows:

d
dt

�x = A�x + Fn , �9�

where

A ª �0 I 0

0 0 − RZa

0 0 − Zg
�, F ª �0 0

R 0

0 I
� . �10�

When no GPS information is available, the estima-
tion error covariance matrix PªE��x��x�T� is propa-
gated through numerical integration of the ordinary
differential equation

d
dt

P = AP + PAT + FQFT.

Position data from the GPS are used to update
the error covariance matrix and the state estimate.
The measurement equation is simply zGPS=p+nGPS.
In order to avoid numerical instability, we use the
UD-factorization method described in Rogers �2003�
to update the error covariance matrix and to com-
pute the filter gain K.

Since the vehicle’s heading is not observable
solely from GPS data, and we wished to reduce the
calibration and initialization procedures to a mini-
mum �e.g., to allow for seamless resets of the filter
during the race�, we impose a soft constraint on the
heading through a virtual measurement of the iner-
tial velocity, of the form

zNHC = arctan� vEast

vNorth
	 −
� ,

where � is the measured steering angle, and
 is a
factor accounting for the fact that the origin of the
body reference frame is not on the steering axle.

In other words, we effectively impose a non-
holonomic constraint �NHC� on the motion of the
vehicle through a limited-sideslip assumption. This
assumption is usually satisfied when the vehicle is
traveling straight, but may not be satisfied during
turns. Moreover, when the vehicle is moving very
slowly, the direction of the velocity is difficult to es-
timate, as the magnitude of the velocity vector is
dominated by the estimation error. Hence, the vir-
tual measurement is applied only when the steering
angle is less than 10°, and the vehicle’s speed is at
least 2.5 mph �both values were determined
empirically�.

The filter described in this section performed
satisfactorily in our tests and during the DGC race,
providing the on-board control algorithms with po-
sition and heading estimates that were nominally
within 10 cm and 0.1°, respectively.

5.3. Modeling System Noise

The state was propagated and updated every time a
GPS signal arrived. There was no noise associated
with the state propagation equation �1�. It was as-
sumed that there was additive white Gaussian noise
associated with the inputs �vmeasured and �measured for
the bicycle model, and za and zg for the six-degrees-
of-freedom model�. To efficiently track the constants
in the state variables �S, �bias, ��, it was assumed that
there was an additive white Gaussian noise term in
their propagation. It was also assumed that the GPS
measurement �latitude and longitude� had some
noise associated with it. The variances assigned to
the noise processes described above were tuned to
ensure that the innovations3 were uncorrelated, and
that the estimator was stable, and converged reason-
ably quickly. By tuning the variances, we can alter
the “trust” associated with the history of the vehicle
state or with the GPS measurement.

3Innovation of a measured data is the difference between the es-
timated and the measured data.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 541

Journal of Field Robotics DOI 10.1002/rob

5.3.1. Determining the Appropriate GPS
Measurement Noise Variance

The received data from the GPS consisted of the lati-
tude, longitude, and a horizontal dilution of preci-
sion �HDOP� value. HDOP is a figure of merit for
the GPS measurement, which is directly related to
the number of satellites visible to the GPS antenna.
The HDOP value is related to the noise in each mea-
surement. However, our attempts at mapping the
HDOP values to actual variances were futile, as we
did not observe a monotonic relationship. It was no-
ticed that an HDOP of more than 5 usually corre-
sponded to multipath reception in GPS, and conse-
quently, the GPS had an abnormally huge variance
in that case. In the absence of any ad hoc relationship
between the HDOP and noise variance, we opted to
keep a constant variance associated with GPS noise
if the HDOP was less than 5 and a huge variance
otherwise. Also, we noticed that the GPS noise was
highly correlated and not white.

5.3.2. Projection of the Innovations

The bicycle estimator is based on a very intuitive
model of the vehicle, which motivates us to consider
the GPS innovations in a physically relevant refer-
ence frame, rather than any arbitrary reference
frame. It is insightful to project the innovations into
the local frame of the vehicle: Parallel to the heading
direction and perpendicular to it. The parallel and
perpendicular body fixed axes are indicated in Fig-
ure 13.

For an ideal estimator, the innovations will be
uncorrelated with each other. However, we tuned
the estimator to just achieve innovations with zero
mean. While tuning the estimator, it was very useful
to consider the parallel and perpendicular innova-
tions. For example, a direct current bias in the paral-
lel innovations implied that we were not tracking
the slip factor �S� adequately. Thus, to ensure a zero-
mean parallel innovation, the variance associated
with the propagation of slip factor should be
increased.

5.3.3. Adaptive Shaping of the Innovations

The noise in the GPS data was highly correlated, and
there was very little a priori knowledge of the vari-
ance. Very often, especially when the vehicle would
drive near a wall or approach a tunnel, there would
be highly erratic jumps in the GPS measurements

due to multipath reflections. Without any a priori
knowledge of the variance in such cases, the state
estimate would bounce around a lot. This was unde-
sirable as it would hamper the path planner and the
obstacle detection subroutines in the main program.

To counter these “unphysical” jumps, once the
estimator was converged, the innovations were
clipped up to a certain maximum absolute value. For
example, a GPS measurement corresponding to a
perpendicular innovation of 2 m in 0.05 s while go-
ing straight is unphysical, and so perpendicular in-
novation should be clipped to a nominal value �in
our case, 6 in.�. This prevented large jumps in state
estimate, but had a grave disadvantage. It was ob-
served that if the innovations were clipped to a fixed
range, then in certain situations, the state estimate
will lag far behind from a “good” set of GPS mea-
surements, and take a long time to converge back. To
prevent this from happening, the clipping limit of
the innovations was determined adaptively as the
minimum of either a fixed limit, or the mean of the
innovations in the last 2 s scaled by a numerical fac-
tor slightly greater than unity. The parallel and per-
pendicular components of the innovation were
clipped separately with different numerical con-
stants used.

5.3.4. Countering the Time Delays

There was some finite delay between the appearance
of sensor data on the bus and the time they were
processed by the control program. Usually, this de-
lay was nominal �
50–200 �s�, but it was sporadi-
cally very large. A large delay in GPS data mani-
fested in large negative parallel innovation.
However, the large innovation was clipped effec-
tively by the method described earlier, and conse-
quently did not effect the state estimate. In the fu-
ture, we plan to implement a routine which
synchronizes the time between all the serial/USB
data sources.

Performance of the state estimator while going
under a bridge is shown in Figure 14. “*” represents
the GPS data received in a local Cartesian coordinate
system. “·” represents the estimated location of the
truck. Golem 2 was moving from left to right in this
figure. Note that the GPS data have a huge variance
due to the multipath. Also note that the GPS noise is
highly correlated; in this case, the variance is huge in
the direction perpendicular to the motion as com-
pared to the parallel direction. As seen from the fig-

542 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

ure, the performance of the state estimator is im-
mune to the large unphysical jumps in GPS data.
Occasional jumps of length
0.3 m are observed in
the successive updates of estimated state. These cor-
respond to a delay in received GPS data and large
negative parallel innovations, as discussed in this
section.

5.3.5. Special Modes of Operation

There were a couple of situations that required spe-
cial handling instructions:

• The GPS signal was observed to drift consid-
erably when the vehicle was at rest. Not only
was this unphysical, but it is also detrimental
to path planning. Thus, when the vehicle was
going considerably slowly or was at rest, the
variance assigned to the GPS measurements
was increased significantly. In such a case, the
bicycle estimator essentially worked as an in-
tegrator, rather than a filter.

• It was observed that the GPS signal would
occasionally jump discretely. These jumps
usually corresponded to the presence of a
power transmission line nearby. The diffi-
culty was that the GPS took a while ��2 s� to
reconverge after the jumps. These unphysical
jumps were easily detected from the jumps in
the parallel and perpendicular innovations.

After the detection of such jumps, the GPS
variance was increased until it was trustwor-
thy again, i.e., until the innovations were
within a certain limit again.

5.3.6. Initialization of the IMU

One advantage of this model was that it converged
very fast while going straight, usually in approxi-
mately 5 s. Once the bicycle model converged, the
heading estimate was used to initialize the IMU.
While going straight, the performance of the bicycle
estimator was extremely good as the heading esti-
mate was within 0.5° of the IMU-computed heading.
However, on sharp turns, the heading estimate was
up to
3° from the IMU-computed heading. Thus,
the IMU-computed heading was given more impor-
tance, especially when GPS signals were bad. In the
future, we plan to extend the bicycle model to in-
clude the angular rotation and linear displacement
data from the IMU.

6. VISION SYSTEMS

For computer vision, desert paths present a different
challenge from paved roads, as the environment is far
less structured, and less prior information is available
to exploit in constructing algorithms. Our approach
was to integrate existing vision technologies which
have been proven to work on-road but have the po-
tential to be transferred to the off-road domain. These
include learning-based road-finding and binocular
stereo reconstruction.

6.1. Mobileye Vision System

Golem 2 was equipped with a sophisticated vision
system, created by Mobileye Vision Technologies
Ltd., consisting of a single camera and a dedicated
processing unit. On-road, the Mobileye system can
find lane boundaries and detect other vehicles and
their positions in real time. The system was adapted
to the off-road environment by Mobileye and the
Hebrew University of Jerusalem.

The Mobileye system combines region-based
and boundary-based approaches to find path posi-
tion and orientation relative to the vehicle. The two
approaches complement each other; thus allowing
reliable path detection under a wide range of cir-

Figure 14. Performance of state estimator while going
under a bridge.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 543

Journal of Field Robotics DOI 10.1002/rob

cumstances. Specifically, we use a variety of texture
filters together with a learning-by-examples Ada-
boost �Freund & Schapire, 1996� classification engine
to form an initial image segmentation into path and
nonpath image blocks. In parallel, we use the same
filters to define candidate texture boundaries and a
projection-warp search over the space of possible
pitch and yaw parameters, in order to select a pair of
boundary lines that are consistent with the texture
gradients and the geometric model. Both the area-
based and boundary-based models are then com-
bined �weighted by their confidence values� to form
a final path model for each frame.

6.1.1. Region-Based Path Detection

The gray-level image is divided into partially over-
lapping blocks. A filter bank is applied to all image
pixels and a descriptor vector is generated per block.
The descriptor contains the mean and standard de-
viation of the filter response over the block for each
of the 16 filters. Each entry in the texture descriptor
can be considered as a “weak” learner, in the sense
that it forms class discrimination. The iterative Ada-
boost algorithm combines the weak learners to form
a powerful classification engine that assigns a path or
nonpath label to every block according to the training
data. The training data were extracted from 200 im-
ages that were gathered on various parts of the 2004
Grand Challenge route. The block classification by
itself is not sufficient for autonomous vehicle path
planning, because about 10% of the blocks are ex-
pected to be misclassified. Filtering methods are
used to clear some of the misclassified blocks, fol-
lowed by detection of path boundaries. The path
boundaries are derived via a minimal error separat-
ing line on each side of the path. The system confi-
dence is calculated from the separation quality and
the sensing range �the distance to the farthest point
that we can reliably identify as the path�. Figure 15
shows the results of each of the main parts of the
algorithm.

6.1.2. Boundary-Based Path Detection

The boundary-based technique does not rely on
prior learned texture information. Instead, it makes
the assumption that the path texture properties are
different than the surrounding nondrivable areas.
For this cue to be reliable, we have to constrain the
solution to a strict geometric model, where the path

boundaries lie on straight parallel edges. This allows
us to reduce the problem of finding a drivable path
to four degrees of freedom: �x ,y� position of the van-
ishing point, and left and right distance to the edge
of the path. The geometric constraints resulting from
assuming a flat world, perspective camera, and par-
allel path boundaries in the world suggest the fol-
lowing projection-warp scheme per frame: Given a
hypothesis of pitch and yaw angles of the camera,
the image is warped to form a top view in world
coordinates. In the warped image, the path bound-
aries are supposed to be parallel vertical lines if in-
deed the pitch and yaw angles are correct. A projec-
tion of the image texture edges onto the horizontal
axis will produce a one-dimensional �1D� profile
whose peaks correspond to vertical texture edges in
the warped image. We look for a pair of dominant
peaks in the 1D profile, and generate a score value
which is then maximized by search over the pitch
and yaw angles via iterating the projection-warp
procedure just described. The search starts with the
pitch and yaw angle estimates of the previous frame,
followed by an incremental pitch and yaw estima-
tion using optic-flow and a small motion model:

xwx + ywy = yu − xv , �11�

where �u ,v� are the flow �displacements� of the point
�x ,y� and wx, wy are the pitch and yaw angles. The
warped image is divided into overlapping 10�10
blocks with each pixel forming a block center. Using
the same filter bank as in the region-based method,
we estimate the likelihood, e−�, that the vertical line
passing through the block center forms a texture gra-
dient, where � is the L1 distance between the texture
vector descriptors of the two respective halves of the
block. To check a hypothesis �for pitch and yaw�, we
project the horizontal texture gradients vertically
onto the x axis and look for peaks in this projection.
An example result of this projection is shown in Fig-
ure 16�d�. The path boundaries and other vertical
elements in the image create high areas in the pro-
jection, while low areas are most likely caused by
vertical texture gradients that are not continuous
and created by bushes, rocks, etc. The peaks in this
projection are maximized when the vanishing point
hypothesis is correct and the path edges �and possi-
bly other parallel features� line up. By finding the
highest peaks for these hypothesis, our system is
able to find the lateral position of the left and right

544 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

boundaries. Figure 16�e� shows the “cleaned-up” 1D
projection profile and the associated pair of peaks
corresponding to the path boundary lines.

6.1.3. Performance

The system was implemented on a Power-PC
PPC7467 1 GHZ running at 20 frames per second.
The camera was mounted on a pole connected to the
front bumper �Figure 17� to allow maximal field of
view. We tried both 45° and 80° field of view lenses,
and found the latter to be more suitable for autono-

mous driving, where the vehicle is not necessarily
centered over the path. For our applications, the
most meaningful overall system performance mea-
sure is to count how often �what fraction of frames�
the system produced correct path edge positions
and, where appropriate, heading angles. Further-
more, it is crucial for the system to know when it
cannot determine the path accurately, so that the ve-
hicle can slow down and rely more on information
from the other sensors. Our results are broken up by
different terrain types. For each, representative chal-
lenging clips of 1000 frames were selected, and the

Figure 15. In �a� and �d�, blocks are classified by texture into path or nonpath. In �b� and �e�, sky blocks are removed and
three lines, arranged in a trapezoid, are fitted to the path blocks. The trapezoid is considered to represent the path. Finally,
in �c� and �f�, the path boundaries are calculated at a given distance ahead of the vehicle �5 m, in this example� together
with the path center and heading angle.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 545

Journal of Field Robotics DOI 10.1002/rob

system performance scored, on these sequences by a
human observer. The path edge distance accuracy
was computed by observing the position of the road
edge marks approximately 6 m in front of the ve-
hicle. A frame was labeled incorrect if the path edge
marker at that location appeared to be more then
30 cm ��18 pixels� away from the actual path
boundary. For straight paths, the perceived vanish-

ing point of the path was also marked, and our al-
gorithm’s heading indicator was compared to the
lateral position of this point.

On relatively straight segments with a comfort-
ably wide path, our system reported availability
�high system confidence� 100% of the time, while
producing accurate path boundary locations 99.5%
of the time. The mean angular deviation of the head-
ing angle from the human marked vanishing point
was 1.7°.

The second test clip is an example of more un-
even terrains with elevation changes. Here, the ve-
hicle passes through a dry river ditch �Figure 18�b��,
where both the path texture and scene geometry are
difficult. When our vehicle is reaching the crest of
the hill �Figure 18�h��, only a short segment of road
is visible. In this case, the system reported unavail-
ability �low confidence� 8% of the time. When avail-
able, however, the accuracy in boundary locations
was 98%.

The final clip contains a winding mountain pass
�Figure 18�g��; difficult due to path curvature as well
as texture variation. Despite these, our system was
available throughout the clip, and achieved an accu-
racy of 96% in detecting the path boundary.

6.1.4. Integration

The combination of the learning and geometric ap-
proaches yields high-quality results with confidence
estimates suitable for integration into our control
systems. Output from the Mobileye system—which

Figure 16. Projection-warp search: �a� Original image
with the overlaid path boundary and focus of expansion
results, �b� the warped image, �c� texture gradients magni-
tude, �d� projection: Vertical sum of gradients, and �e� pro-
jection profile followed by convolution with a box filter.
The two lines on top of the histogram mark the path
boundaries.

Figure 17. The camera is mounted inside a housing, atop
a pole connected to the front bumper. This allows a better
field of view than mounting the camera on the windshield.

546 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

included path boundaries, orientations, and pitch—
was integrated into the Golem path planner. Path
boundaries were marked as line obstacles, and pro-
jected onto the world coordinate frame using the
known transformation between the Mobileye cam-
era, the GPS antenna, and the road surface. Figure 19
shows the detected trail boundary and trail center
relative to the vehicle and to the vehicle’s actual
trajectory.

6.2. Toshiba Stereo Vision System

The Golem/UCLA Team experimented with a vari-
ety of stereo vision systems for the purposes of ob-
stacle detection, ground-plane registration, and path
finding. Fixed-camera stereo is a well-studied prob-
lem, and there are a number of academic and com-
mercial systems of varying quality. Long-range sens-
ing is essential for use in a high-speed automobile,
since time is of the essence; it is impractical and

sometimes impossible to stop to analyze nearby ob-
stacles. This requirement translates into a wide base-
line separating the stereo cameras, since the maxi-
mum range of the system is determined by this
distance. A further performance constraint is pro-

Figure 18. Sample images and system output from 6 h of driving in the Mojave desert. The path is marked by two
left-right boundary points and a center point with heading orientation. The “X” mark in �h� coincides with zero confi-
dence due to short range of visible path. In �i�, the path is detected even though the vehicle is not centered on the path �a
common situation in autonomous driving�.

Figure 19. Trail boundaries detected by the Mobileye
system.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 547

Journal of Field Robotics DOI 10.1002/rob

cessing time, since latency can introduce dangerous
errors in path planning and control. Toshiba Re-
search, in Kawasaki, Japan, developed a stereo sys-
tem for on-road driving at high speeds, which we
installed on Golem 2. Due to insufficient time, we
did not integrate the stereo system into the control
system of the vehicle before the GCE, but there is no
doubt that it has a high potential for successful au-
tonomous driving. In this section, we describe the
hardware configuration and implementation details.

6.2.1. Hardware Configuration

Figure 20 shows the setup of our stereo cameras.
Two metal plates sandwich and rigidly fix the cam-
eras, so that they can withstand the strong vibrations
caused by off-road driving. The distance between
the two cameras is 1.2 m, and each camera is about
1.5 m above the ground plane. We use charge
coupled device �CCD� cameras with 7.5 mm lenses
that have an image resolution of 320�240 pixels.

Our stereo system is based on a multi-VLIW
�very long instruction word� processor called Vis-
conti �Hattori & Takeda, 2005; Tanabe, 2003�. The
processor architecture is designed to ensure efficient

performance for general image processing opera-
tions, while satisfying several requirements for auto-
motive use, e.g., operating temperature range of
−40– +85°C, power consumption �1 W@150 MHz.
Figure 21 shows a prototype of an image processing
unit using Visconti. It has three video input channels
and a video graphics array video output to display
the processing results. Figure 22 shows the block
diagram of Visconti. The processor includes one im-
age transformation module and three processing
modules operating in parallel. Each of the three pro-
cessing modules consists of a reduced instruction set
computer processor core and a VLIW coprocessor.
Several types of single-instruction multiple-data
�SIMD� operations required for stereo computation,
including convolution, accumulation, and pixel
shift, are supported in the instruction set of the co-
processor. Each processing module also has a scratch
pad memory and a direct memory access controller,

Figure 20. Setup of stereo cameras.

Figure 21. Prototype processing hardware.

Figure 22. Block diagram of Visconti.

548 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

so that memory access latency is hidden by double-
buffering data translation.

6.3. Implementation Details

We adopt the sum of absolute differences �SAD� as a
matching criterion within a 7�7 window, as SAD is
less computationally expensive than other measures
such as the sum of squared differences and normal-
ized cross correlation. We also use a recursive tech-
nique for the efficient estimation of SAD measures
�Faugeras et al., 1993; Hattori & Takeda, 2005�. In
order to compensate for possible gray-level varia-
tions due to different settings of the stereo cameras,
the input stereo images are normalized by subtrac-
tion of the mean values of the intensities within a
matching window at each pixel. Also, the variance of
intensities at each point is computed on the refer-
ence image to identify those regions which have in-
sufficient intensity variations for establishing reli-
able correspondences.

As Visconti has one image transformation mod-
ule and three processing modules operating in par-
allel, task allocation for these modules is crucial to
real-time operation. For instance, the stereo rectifica-
tion is a indispensable process that transforms input
stereo images so that the epipolar lines are aligned
with the image scan lines. The image transformation
module carries out the stereo rectification, which is
difficult to accelerate by SIMD operations due to ir-
regular memory access. Also, we divide a pair of
images into three horizontal bands which are allo-
cated to those three processing modules. Each of
three areas has about the same number of pixels, so
that the computation cost is equally distributed
across the three modules.

Due to the recursive technique for SAD compu-
tation, those task allocations, and SIMD instructions,
our stereo system is capable of disparity estimation
at a rate of about 30 frames/s with up to 30 dispar-
ity levels and an image input size of 320
�240 pixels. This performance is higher than that of
a 2.0 GHz processor with SIMD instructions. Figure
23 shows several examples of disparity images.
More red intensity indicates larger disparity values
which means closer areas, while black indicates tex-
tureless regions. The bottom of input images is ex-
cluded from the stereo computation since it corre-
sponds to a part of the hood of the vehicle. These
input stereo images were taken in the Mojave desert.

Figure 23. Input images and their disparity maps. More
red intensity indicates larger disparity values, i.e., closer
regions, and black indicates textureless regions. Note that
a part of the hood of the vehicle appears on the bottom of
input images, and these regions are excluded for the dis-
parity estimation.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 549

Journal of Field Robotics DOI 10.1002/rob

7. RESULTS

Golem 2’s qualifying runs on the NQE obstacle
course were among the best of the field, as shown in
Table I, although we also failed on two runs for rea-
sons discussed in Section 7.1.

Golem 2 raced out of the start chute at the 2005
GCE in the seventh pole position. We knew that Go-
lem 2 was capable of driving well at high speeds. Our
speed strategy was that the vehicle would drive at the
maximum allowed speed whenever this was below
25 mph. If the recommended speed was greater than
25 mph �implying that the maximum allowed speed
was 50 mph�, then Golem 2 would exceed the recom-
mended speed, by small amounts at first, but more
and more aggressively as the race continued, until it
was always driving at the maximum legal speed, ex-
cept, of course, when modulating its speed during a
turn.

As expected, Golem 2 made rapid time on dirt
roads and over a dry lakebed. On a paved bridge, Go-
lem 2’s laser sensors misperceived the reflective
“Botts’ dots” in the center of the road as obstacles,
which seemed to vanish like a mirage as the vehicle
got closer. �See Figure 24.� This caused the vehicle to
weave back and forth on the bridge, alarming the
DARPA observers in the chase vehicle. But our ve-
hicle kept going and once it reached dirt road again,
it straightened out and resumed progress at over 30
miles per hour.

The DARPA observers characterized Golem 2 as
initially “skittish” and compared it to a teenage
driver, but stated that once it left the paved road and
entered the desert, they were impressed by its perfor-
mance and believed they had a winner on their
hands.

Unfortunately, after driving 22 miles in just un-

der 1 h, the computer crashed due to faulty memory
management. The uncontrolled vehicle departed
from the course boundaries at high speed, crashing
through vegetation. The DARPA “pause” button was
no longer functional, since no software was running,
and the DARPA observers did not press the “disable”
button in case the vehicle might recover. Golem 2
hurtled more than one-half mile off the course before
the pounding from the rough terrain finally shook
connectors free from its fusebox, killing the engine.

7.1. Causes of Failure

Golem 2 crashed on three significant occasions:
Twice during NQE trials and once during the GCE.
We think that all of these failures should be consid-
ered mere “bugs” rather than fundamental flaws in
the design. Nevertheless, it may be interesting to re-
view the causes of these failures.

On its first attempt at the NQE course, Golem 2
immediately veered off to the right and crashed into
one side of a gate intended to simulate a cattle cross-
ing. It knocked down the fence beside the gate and
came to a stop. The primary cause of this failure was
that one of the vertical ladars had been repositioned
and miscalibrated �due to a missing decimal point�.
Mishandling of the course start conditions was a
contributing factor.

The sequence of events is illustrated in Figure
25. At the 2005 NQE, vehicles were launched out of
start chutes which were located far outside the des-
ignated course boundaries. We should have been
prepared for this special case and the correct proce-
dure was to consider the course boundaries to ex-
tend backward to the start position. However, in-
stead Golem 2 reacted as it would generically react
to being far off course, by relaxing the course bound-
ary constraints outward. In Figure 25�a�, the vehicle
is moving in a straight trajectory, which is hardly
constrained by the course boundaries. In Figure
25�b�, the vehicle has moved back onto the RDDF
course, and also detected the gate ahead, where the
orange circles indicate obstacles. The planning
boundary constraints have contracted inward and
the vehicle has planned a trajectory which is very
nearly correct, i.e., a trajectory which passes through
the first gate. Unfortunately, the boundary con-
straints have not tightened quite enough and the tra-
jectory skirts the right edge of the RDDF course. In
Figure 25�c�, because of the miscalibrated ladar, the
vehicle has misperceived a cloud of phantom ob-

Figure 24. Golem 2 misperceives reflective dots on a
paved road surface as obstacles.

550 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

stacles where no obstacles actually existed, and
planned to swerve around them to the right. In Fig-
ure 25�d�, the vehicle has perceived that its new tra-
jectory collides with a real obstacle, the fence, but it
cannot find a plan that does not appear to result in
collision. In Figure 25�e�, collision is imminent and
the vehicle belatedly attempts to brake. In Figure
25�f�, the fence has been knocked down and the ve-
hicle has come to a stop. Although the vehicle was
physically capable of proceeding forward over the
crushed fence, there was no “restart” logic enabling
the vehicle to begin moving again.

Our reaction to this failure was, of course, to fix
the calibration of the vertical ladar, to correctly
handle the special case of starting outside the course
boundaries, to improve the reaction of the velocity

controller to obstacles, and to prevent the vehicle
from coming to a permanent stop if not paused. We
were able to carry out these fixes only because of the
very useful dashboard visualization tool, shown in
Figure 25 and elsewhere, that enabled us to closely
examine the results of the failed run and simulate
what would result from changes to the software.

After two very successful completions of the
NQE course, Golem 2 crashed again on the fourth
attempt. This time, the bug was in the path planner,
which failed to properly validate all the possible
candidate trajectories and ended up selecting a de-
generate trajectory containing two sharp 180° turns.
The impossibly tight loop in the desired trajectory
caused the vehicle to jerk suddenly into a concrete
barrier. This event motivated increased evaluation of
candidate trajectories, and repair and reinforcement
of Golem 2’s steering actuator.

Golem 2’s final and most distressing failure oc-
curred during the GCE due to static memory over-
allocation. Large amounts of random access memory
were set aside at start time for use in recording ob-
stacles, trajectories, and sensor history. In fact, the
memory was overallocated, but this did not become
apparent until a large sensor history had accumu-
lated, which, because of the mapping between geo-
graphic coordinates and elements of the sensor ob-
servation array, only occurred when a large amount
of terrain had been covered. Golem 2 had made ex-
perimental autonomous runs of 10 miles or so, but
had never made a continuous overland journey on
the scale of the GCE. Furthermore, an endurance
trial which consisted of driving for long periods
around a track would probably not have uncovered
this bug. Only when Golem 2 had driven across 22
miles of new terrain did the memory bug manifest
itself and crash the control program.

Although the Golem 2 software is inherently
memory intensive in its approach, it should be able
to operate with well under 1 GB of random access
memory, and therefore this failure was perfectly
avoidable in principle.

8. SUMMARY AND FUTURE WORK

Despite occasional problems, the Golem vehicles
have demonstrated a high level of high-speed driving
performance, and we think that our design approach
has promise. The system managed to negotiate ob-

Figure 25. An initial failure of Golem 2.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 551

Journal of Field Robotics DOI 10.1002/rob

stacles at speed using a relatively small amount of
computational power �a single 2.2 GHz laptop� and
relatively sparse laser range data.

The key drivers of this economically promising
performance include a simplified computational ar-
chitecture; using a combination of horizontally and
vertically oriented ladars to reliably sense major ob-
stacles while disregarding inessential details of the
terrain; a fast heuristic planner which rapidly finds
solutions in typical driving situations; and vehicle
state estimation using both an IMU and physical rea-
soning about the constraints of the vehicle.

The “false” obstacles sometimes announced by
the ladar system were not entirely spurious, but gen-
erally represented road markings or minor travers-
able obstacles. Ideally, these would neither be ignored
nor mistaken for nontraversable obstacles, but placed
in a third category and treated appropriately by the
planning software. A future direction for the sensing
software is to improve the handling of these features,
and also to improve the handling of moving ob-
stacles.

ACKNOWLEDGMENTS

In addition to the authors of this paper, the Golem
Group included Jim Swenson, Jerry K. Fuller, Josh
Arensberg, Kerry Connor, Jeff Elings, Izaak Giber-
son, Maribeth Mason, Brent Morgan, and Bill Cald-
well, without whose invaluable technical assistance
the Golem vehicles would not have been possible.

The financial support of the Henry Samueli
School of Engineering and Applied Sciences at the
University of California, Los Angeles, is gratefully
acknowledged. In addition, we received financial
support and in-kind donations from a number of
other organizations, including BEI Technologies,
Mobileye, NovAtel, Sick, and OmniStar.

REFERENCES

Alon, Y., Ferencz, A., & Shashua, A. �2006�. Off-road path
following using region classification and geometric
projection constraints. Paper presented at the Interna-
tional Conference on Computer Vision and Pattern
Recognition, New York.

Bornstein, J.A., & Shoemaker, C.M. �2003�. Army ground
robotics research program. In Unmanned ground ve-
hicle technology V, Orlando, Florida. SPIE Proceed-
ings Series, Volume 5083 �pp. 303–310�.

Coombs, D., Murphy, K., Lacaze, A., & Legowik, S. �2000�.
Driving autonomously offroad up to 35 km/h. In Pro-
ceedings of the IEEE Intelligent Vehicles Symposium,
Dearborn, Michigan.

Dickmanns, E. �1997�. Vehicles capable of dynamic vision.
Paper presented at the International Joint Conference
on Artificial Intelligence, Nagoya, Japan �pp. 1577–
1592�.

Dickmanns, E.D. �2004�. Dynamic vision-based intelli-
gence. AI Magazine, 25�2�, 10–30.

Faugeras, O., Hots, B., Mathieu, H., Vieville, T., Zhang, Z.,
Fua, P., Theron, E., Moll, L., Berry, G., Vuillemin, J.,
Bertin, P., & Proy, C. �1993�. Real-time correlation-
based stereo: Algorithm, implementations, and appli-
cations �Technical Report No. 2013�. Sophia-Antipolis,
France: INRIA.

Frazzoli, E., Dahleh, M.A., & Feron, E. �2002�. Real-time
motion planning for agile autonomous vehicles.
AIAA Journal of Guidance, Control, and Dynamics,
25�1�, 116–129.

Freund, Y., & Schapire, R.E. �1996�. Experiments with a
new boosting algorithm. Paper presented at the Inter-
national Conference on Machine Learning, Bari, Italy
�pp. 148–156�.

Gelb, A. �1974�. Applied optimal estimation. Cambridge,
MA: MIT Press.

Hattori, H., & Takeda, N. �2005�. Dense stereo matching in
restricted disparity space. In Proceedings of the IEEE
Intelligent Vehicles Symposium, Las Vegas �pp. 118–
123�.

Hong, T.H., Shneier, M.O., Rasmussen, C., & Chang, T.
�2002�. Road detection and tracking for autonomous
mobile robots. Paper presented at the SPIE 16th An-
nual International Symposium on Aerospace/Defense
Sensing, Simulation, and Controls, Orlando, Florida.

Kalman, R.E. �1960�. A new approach to linear filtering
and prediction problems. Transactions of the ASME,
82, 35–45.

Kalman, R.E. & Bucy, R.S. �1961�. New results in linear
filtering and prediction theory. Transactions of the
ASME, 83, 95–107.

Kavraki, L., Svestka, P., Latombe, J., & Overmars, M.
�1996�. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12, 566–580.

LaValle, S. �1998�. Rapidly-exploring random trees: A new
tool for path planning �Technical Report No. TR 98-
11�. Ames, IA: Iowa State University.

Rasmussen, C. �2002�. Combining laser range, color, and
texture cues for autonomous road following. Paper
presented at the IEEE International Conference on Ro-
botics and Automation, Washington, DC.

Rogers, R.M. �2003�. Applied mathematics in integrated
navigation systems. AIAA Education Series, 2nd ed.
Reston, VA: AIAA.

Roundy, D. �2005�. David’s advanced revision control sys-
tem �http: //darcs.net/
.

Tanabe, J. �2003�. Visconti: Multi-vliw image recognition
processor based on configurable processor. Paper pre-
sented at the Custom Integrated Circuits Conference,
San Jose, California �pp. 185–188�.

552 • Journal of Field Robotics—2006

Journal of Field Robotics DOI 10.1002/rob

Urmson, C. �2005�. Navigation regimes for off-road driv-
ing �Technical Report No. CMU-RI-TR-05-23�. Pitts-
burgh, PA: Carnegie Mellon University, Robotics
Institute.

Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez, J.,
Gowdy, J., Gutierrez, A., Harbaugh, S., Johnson-
Roberson, M., Kato, H., Koon, P., Peterson, K., Peter-
son, B., Smith, B., Spiker, S., Tryzelaar, E., & Whit-

taker, W. �2004�. High-speed navigation of
unrehearsed terrain: Red Team technology for Grand
Challenge �Technical Report No. TR-04-37�. Pitts-
burgh, PA: Carnegie Mellon University, Robotics
Institute.

Welch, G., & Bishop, G. �1995�. An introduction to the Kal-
man filter �Technical Report No. TR 95-041�. Chapel
Hill, NC: University of North Carolina at Chapel Hill.

Mason et al.: The Golem Group/UCLA in the DARPA Grand Challenge • 553

Journal of Field Robotics DOI 10.1002/rob

