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Abstract— We consider the problem of control strategy syn-
thesis for robots that interact with external agents, together
known as the environment. Both the robot and the environment
are modeled as dynamical systems with differential constraints
and take part in a nonzero-sum two-player differential game
to fulfill their respective task specifications while satisfying
a set of safety rules. They minimize a cost function that is
representative of the level of unsafety with respect to these safety
rules. Throughout, the problem is motivated by an autonomous
car in an urban environment that interacts with other cars
in situations such as navigating stop signs at road junctions
and single-lane roads. Ideas behind sampling-based motion-
planning algorithms are used to incrementally construct a finite
Kripke structure abstraction of a continuous dynamical system.
Model-checking techniques for safety rules expressed using
Linear Temporal Logic (LTL) are then leveraged to propose
an algorithm which synthesizes a control strategy for the two-
player game. We analyze the algorithm to show that, with
probability one, it converges to the Stackelberg equilibrium
asymptotically. This algorithm is also demonstrated in a number
of simulation experiments.

I. INTRODUCTION

Autonomous cars have quickly transitioned from exper-
imental projects such as the DARPA Grand Challenge [1]
into urban mobility systems. As they increasingly share
infrastructure with other drivers, it is essential to ensure
that they interact with human-driven vehicles according to
the rules of driving and safety on the road. Behaviors such
as merging into busy lanes or handling stop-signs at cross-
roads, which are typically enforced using right-of-way or
even communication, are easy for human drivers but are
arguably much harder for autonomous agents [2].

This paper addresses problems motivated from au-
tonomous urban mobility where agents interact with other
external agents. It draws from roughly three different areas,
i.e., differential games, model checking and sampling-based
motion-planning algorithms. Two players, the robot and the
environment, take part in a differential game, while satisfying
task specifications such as reaching a certain goal region
subject to safety rules such as “always stay in the right
lane” or “do not change lanes frequently”. Such rules can
be typically expressed as temporal logic formulas using
formal languages such as Linear Temporal Logic (LTL) and
deterministic µ-calculus.
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Differential games [3], [4] are popular models for prob-
lems such as multi-agent collision avoidance [5], and pursuit-
evasion problems [6]. However, analytical solutions for dif-
ferential games exist for only specific problems, e.g., the
“lady in the lake” game, or Linear Quadratic Regulator
(LQR) games [4]. For problems involving more complex
dynamics or other kinds of cost functions, solutions are
hard to characterize in closed form. Numerical techniques
are based on converting the problem to a finite dimensional
optimization problem [7] or solving the corresponding partial
differential equations using shooting methods [8], level set
methods [9] etc.

On the other hand, the problem of synthesizing control
strategies that satisfy temporal logic specifications has been
studied in a number of recent works [10], [11]. However,
the main challenge here lies in finding good abstractions of
continuous dynamical systems [12]. These methods are in
general not complete, i.e., the algorithm may not be able to
return a controller that satisfies task specifications even if
one exists, depending upon the level of discretization.

Sampling-based motion planning algorithms, e.g., Proba-
bilistic Road Maps (PRMs) and Rapidly-exploring Random
Trees (RRTs), have been widely applied to solve the problem
of finding an optimal trajectory for dynamical systems from
an initial state to a goal state. Very recently, they have also
seen application in solving pursuit-evasion games [13], and
handling complex task specifications [14]. Algorithms such
as PRM∗ and RRT∗ [15] which are computationally efficient
counterparts of these algorithms have been instrumental
in these applications, since they provide both probabilistic
completeness and asymptotic optimality guarantees.

The main contribution of this work is a formulation to
compute equilibria for two-player differential games where
players try to accomplish a task specification while satisfying
safety rules expressed using temporal logic. Building upon
our previous work [16], we formulate the interaction between
an autonomous agent and its environment as a non-zero
sum differential game; both the robot and the environment
minimize the level of unsafety of a trajectory with respect
to safety rules expressed using LTL formulas. We abstract
a continuous-time dynamical system with differential con-
straints into finite Kripke structures and employ model
checking techniques to quantify the level of unsafety. We
describe an algorithm to compute the open-loop Stackelberg
equilibrium (OLS) of the differential game on these Kripke
structures. It can be shown that the algorithm converges to the
OLS as the number of samples in the Kripke structure goes to
infinity. A number of examples motivated from autonomous
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urban mobility such as stop signs at junctions and single lane
roads are discussed using simulation experiments.

This paper is organized as follows: After introducing pre-
liminary concepts in Sec. II, we formally state the problem
in Sec. III. Sec. IV details an algorithm to compute the
Stackelberg equilibrium of the differential game, which in
turn is analyzed in Sec. V. We demonstrate this algorithms
using computational experiments in Sec. VI and conclude
with directions for future work in Sec. VII.

II. PRELIMINARIES

This section introduces material on Kripke structures for
dynamical systems, finite automata, LTL and differential
games used in this paper.

A. Durational Kripke Structures

Let Π be a set of atomic propositions. The cardinality
and the set of all subsets of Π are denoted by |Π| and 2Π,
respectively. Let Xr ⊂ Rdr and Ur ⊂ Rmr be compact sets.
Consider a time-invariant dynamical system given by,

ẋr(t) = fr(xr(t), ur(t)), xr(0) = xr,0 (1)

where xr,0 is the initial state of the robot. Trajectories of
the states and controls are denoted by xr : [0, T ] → Xr

and ur : [0, T ] → Ur, respectively, for some T ∈ R≥0.
Similarly, let Xe ⊂ Rde and Ue ⊂ Rme be compact sets.
The dynamical system for the environment is then given by,

ẋe(t) = fe(xe(t), ue(t)), xe(0) = xe,0 (2)

The functions, fr : Xr ×Ur → Xr and fe : Xe ×Ue → Xe

are assumed to be differentiable, measurable and Lipschitz
continuous in both its arguments for existence and unique-
ness of solutions. For the rest of this section X refers to both
Xe and Xr while U refers to both Ue and Ur.

Let Lc : X → 2Π be a labeling function that
maps each state to the atomic propositions that it satis-
fies. For a trajectory x : [0, T ] → X , define D(x) =
{t | lims→t− Lc(x(s)) 6= Lc(x(t))} to be the ordered set
of discontinuities of Lc. We assume that D(x) is finite for
any x. Let D(x) = {t1, t2, . . . , tn}. The finite timed word
generated by x is defined to be, ρ(x) = (ρ0, ρ1, . . . , ρn),
where ρi = (li, di) such that, li = Lc(x(ti)) and di =
ti+1 − ti for 0 ≤ i < n with t0 = 0, ln = Lc(x(tn))
and dn = T − tn. The finite word w(ρ) of x is then simply
the projection w(ρ) = (l0, l1, . . . , ln).

Definition 1 (Durational Kripke Structure [17]) A dura-
tional Kripke structure is a tuple K = (S, s0, R,Π,L,∆),
where, (i) S is a finite set of states, (ii) s0 ∈ S is an initial
state, (iii) R ⊆ S × S is a deterministic transition relation,
(iv) Π is a set of atomic propositions, (v) L : S → 2Π is a
state labeling function, and, (vi) ∆: R→ R≥0 is a function
assigning a time duration to each transition.

A trace of K is a finite sequence of states ξ = s0, s1, . . . , sn
such that s0 = s0 and (si, si+1) ∈ R, for all 0 ≤ i <
n. It produces a finite timed word ρ = ρ0ρ1 . . . ρn−1, with
ρi = (L(si),∆(si, si+1)) and ρn = (L(sn), 0). For a word

w(ρ) = l0 . . . ln, with li = L(si), let I = {i0, i1, . . . , ik}
be a set of indices, such that i0 = 0, lij = lij+1 = . . . =
lij+1−1 6= lij+1

, for all 0 ≤ j ≤ k−1, and lk = lk+1 = . . . =
ln. Define destutter(w(ρ)) = li0 , li1 , . . . , lik−1

, lik . It is thus
a word with all consecutive repeated symbols removed from
w(ρ).

We require Kripke structures to be trace inclusive with re-
spect to the continuous dynamical system. A Kripke structure
K is called trace inclusive if, S ⊂ X , s0 = x0, and there
exists a trajectory x : [0, T ] → X such that x(0) = s1,
x(T ) = s2 with T = ∆(s1, s2) and |Dx| ≤ 1 for all
(s1, s2) ∈ R. It then follows that given any trace ξ of K,
there exists a trajectory of the dynamical system such that
destutter(w(ρ)) = w(ρ(x)) which helps us formalize when
both ρ and x, satisfy certain specifications.

B. Linear Temporal Logic (LTL)

We briefly describe finite automata and LTL in this section.
Please see [18], [19] for a more thorough exposition.

1) Finite Automata: A non-deterministic finite automaton
(NFA), A = (Q, q0,Σ, δ, F ), is a tuple where, Q is a finite set
of states, q0 ∈ Q is the initial state, Σ is an input alphabet,
δ ⊆ Q × Σ × Q is a non-deterministic transition relation,
and, F ⊆ Q is a set of accepting states. The semantics of
NFAs are defined over finite words produced by durational
Kripke structures (see Def. 1). In particular, in this work, the
alphabet Σ is chosen to be 2-tuples of atomic propositions,
i.e., 2Π × 2Π. Similar to [16], we assume, without loss of
generality, that NFAs are non-blocking, i.e., (q, (l1, l2), q′) ∈
δ for all q, l1, l2. As discussed in [19], for any NFA A, one
can construct a non-blocking NFA that is equivalent to A by
inserting a trapping state. The set of all words accepted by
A, also known as its language is denoted by L(A).

Given a non-blocking automaton A, let A =
(Q, q0,Σ, δ, F,W ) be an automaton with priority $(A) ∈ N
such that, δ = δ ∪ (q, (σ, σ′), q′) for all q, q′ ∈ Q and
(σ, σ′) ∈ Σ. W is a weighing function such that W (τ) = 0
if τ ∈ δ and W (τ) = $(A) otherwise for all τ ∈ δ. A
is referred to as the weighted automaton. Note that the
language of A is simply Σ∗, i.e., it accepts all finite words,
but weights words that do not belong to L(A) using W .

Given a set of weighted NFAs, A1, . . . , An, we can
construct their product AΨ = (QΨ, q0,Ψ,Σ, δΨ, FΨ,WΨ).
The weight of a trace satisfying WΨ(τ) =
(W1(τ1),W2(τ2), . . . ,Wn(τn)) where Wi is the weight
function of automaton Ai and τ ∈ δΨ while τi ∈ δi
for all i. The rest of algorithm to construct the product
automaton is standard [16]. Note that the language of the
product automaton is the intersection of the languages of
the component automata while the weight of each run is a
tuple of the weights of runs on component automata.

2) Finite LTL: In this work, we use the class of LTL
formulas without the next operator, which is denoted by
FLTL−X. An FLTL−X formula over a set Π of atomic
propositions is inductively defined as follows:
• (a, a′) ∈ Π × Π is a formula for all a, a′ ∈ Π ∪
{true, false},



• For any two formulas φ1, φ2, φ1 ∨ φ2, ¬φ1, φ1 Uφ2,
Gφ1, and Fφ1 are also formulas.

Here, ¬ (negation) and ∨ (disjunction) are Boolean operators,
and U, G, and F are temporal operators. In general, FLTL−X
formulas are interpreted on infinite traces [19]. In this work,
we follow the semantics described in [20], which allows
FLTL−X formulas to be interpreted on finite traces. As shown
in [20], FLTL−X over finite traces can be automatically
translated into equivalent finite automata.

C. Level of Unsafety

We now introduce the specific structure of cost functions
considered in this work. The cost of a trace of the Kripke
structure K is a lexicographical tuple where each element is
the cost of violating a safety rule expressed in the form of a
finite automaton, A. The priority $(A) is simply the index
of the rule A in this tuple.

Definition 2 (Level of unsafety) For a word w =
l0, . . . , ln and subset I = {i1, i2, . . . , ik} ⊂ {0, 1, . . . , n},
define vanish(w, I) = l0, . . . , li1−1, li1+1, . . . ln to be the
sub-sequence of w after erasing elements li1 , . . . , lik . The
level of unsafety λ(w,A) of w with respect to A is :

λ(w,A) = min
I⊆{0,...,n} | vanish(w,I)∈L(A)

|I| $(A).

Similarly, λ(ξ, A) for a trace ξ = s0, . . . , sn+1 of the
durational Kripke structure is :

λ(ξ, A) = min
I⊆{0,...,n}|vanish(w(ρ),I)∈L(A)

∑
i∈I

∆(si, si+1)$(A).

By convention, the level of unsafety of an empty trace or an
empty word is zero.

For a set of rules Ψ = (Ψ1, . . . ,Ψn) with each rule ψj ∈
Ψi, for all 1 ≤ i ≤ n given in the form of a finite automaton
Aij , we define the level of unsafety λ(w,Ψ) to be the
ordered tuple, (λ(w,Ψi), . . . , λ(w,Ψn)) where λ(w,Ψi) =∑
j λ(w,Aij). We use the standard lexicographical ordering

on λ(w,Ψ) to compare the level of unsafety of two words
w1, w2. By picking the definition of the level of unsafety and
the definition of the weighted automaton in Sec. II-B.1, we
have ensured that the weight of the shortest accepting run of
A over a word w is exactly equal to λ(w,A).

Lemma 3 (Lem. 1 in [21]) Any word w ∈ Σ∗ is accepted
by A and the weight of the shortest accepting run is λ(w,A).

Similarly the role of the product AΨ is characterized as
follows: its weights are chosen in such a way that the level
of unsafety of any accepting run on it is equal to the level
of unsafety of the word with respect to safety rules.

Definition 4 (Product Automaton P ) Given a trace-
inclusive Kripke structure K = (S, s0, R,Π,L,∆)
and AΨ = (QΨ, q0,Ψ,Σ, δΨ, FΨ,WΨ), their product is
P = (QP , q0,P , δP , FP ,WP ) where
• QP = S ×QΨ;
• q0,P = s0 × q0,Ψ;

• (z, z′) ∈ δP , WP (z, z′) = (WΨ(τ),∆(s, s′)) if
(s, s′) ∈ R and (τ) ∈ δΨ where z = (s, q), z′ = (s′, q′)
and the transition τ = (q, (L(s),L(s′)), q′) and,

• FP = S × FΨ.

The product automaton can be used to compute λ(ξ,Ψ) for
any trace ξ of the Kripke structure by summing weights along
its transitions. Note that the trace of the product with the
smallest weight uniquely corresponds to a trace of the Kripke
structure that minimizes the level of unsafety [16], [21].

D. Differential Games

For dynamics shown in Eqn. (1) and Eqn. (2), let x =
(xr, xe)

T be the combined state of the game such that,

dx

dt
= f(x(t), ur(t), ue(t)) =

[
fr(xr(t), ur(t))
fr(xe(t), ue(t))

]
, (3)

for all t ∈ R≥0 with the initial state x(0) = x0 =
(xr,0, xe,0)T . The state of the game x ∈ X = Xr × Xe.
It is easily seen that conditions for existence and uniqueness
of solutions of Eqn. (1) and Eqn. (2) given in Sec. II-A also
ensure that Eqn. (3) has similar properties. Given a trajectory
of the game x : [0, T ]→ X , let the corresponding trajectories
of R and E be xr and xe, respectively. Players R,E optimize
the cost functions Je(x0, ur, ue), Jr(x0, ur, ue), respectively.

We consider an information structure wherein, R knows
the cost function of E, but the player E does not know the
cost function of R, i.e., it has no information of the intention
of R. E however knows the control strategy of player R and
can take it into account while devising its strategy. Define
BR to be the mapping from a trajectory ur : [0, T ]→ Ur to
ue : [0, T ]→ Ue such that,

BR(ur) = arg min
ue

Je(x0, ur, ue).

BR(ur) is thus the best response that E can take given a
control trajectory of R. The player R then picks its best
strategy u∗r , such that,

Jr(x0, u
∗
r , u
∗
e) ≤ Jr(x0, u

′
r,BR(u′r))

where u∗e = BR(u∗r), for any u′r. Such a strategy, i.e.,
(u∗r , u

∗
e) is called an open-loop Stackelberg (OLS) equilib-

rium for this differential game. Necessary conditions for
existence of open-loop Stackelberg equilibria can be char-
acterized as shown in [22].

Note that E solves an optimization problem given R’s
control ur, however R can change its control if the game
starts at some later time and if R can obtain a lower value
for its cost function. For example, if an obstacle in the envi-
ronment moves at some time t1 ∈ (0, T ), the player R can
change its control for times t > t1 in order to obtain a lower
cost. E then has no option but to devise a new strategy that
minimizes its cost function with respect to R’s new strategy.
This property is known as time inconsistency and open-
loop Stackelberg strategies are not time consistent. Feedback
strategies, which can be shown to be time consistent are the
subject of future work.



III. PROBLEM FORMULATION

This section formalizes the problem considered in this
paper and models it as a nonzero-sum differential game
between two players, the robot (R) and the environment (E).
Both R and E minimize their respective cost functions while
satisfying their task specifications. In the sequel, for clarity
of presentation, we assume that the dynamics of both players
is the same. Also, atomic propositions, Π, and safety rules
Ψ, are same for both players. The formulation is however
general and also applies to cases where players with different
dynamics minimize cost for different sets of safety rules.

We consider the task specification defined as “traveling
from an initial state to a final goal set without colliding
with any obstacles or other agent”. In this context, define
compact sets Xr,obs, Xr,G ⊂ Xr and Xe,obs, Xr,G ⊂ Xe.
A trajectory of the game in Eqn. 3, x, can be projected
to obtain trajectories xr, xe of players R,E respectively.
xr is said to satisfy the task specification Φr if for some
Tr ∈ R≥0; xr(0) = xr,0, xr(Tr) ∈ Xr,G, xr(t) /∈ Xr,obs

and ‖xr(t) − xe(t)‖2 > c for all t ∈ [0, Tr] for a fixed
constant c. Similarly, xe is said to satisfy Φe if for some
Te ∈ R≥0; xe(0) = xe,0, xe(Te) ∈ Xe,G, xe(t) /∈ Xe,obs

and ‖xr(t)− xe(t)‖2 > c for all t ∈ [0, Te].

A. Normalized Level of Unsafety

The level of unsafety for a set of safety rules in Def. 2
is a cost tuple and is compared using the lexicographical
ordering. For convenience, we normalize it and convert it
into a scalar cost function λ(w,Ψ) by setting $(Aij) = 2−i.
Specifically, define

λ(w,A) =

{
1− exp(−λ(w,A)) if λ(w,A) <∞
1 otherwise;

for any word w and λ(w,Ψ) =
∑n
i=0

∑
j λ(w,Aij) with

$(Aij) = 2−i. It is easy to see that given two words w1, w2

and a set of safety rules Ψ = {Aij} such that λ(w1,Ψ) ≤
λ(w2,Ψ), we also have λ(w1,Ψ) ≤ λ(w2,Ψ).

Let us now define a continuous version of the level of
unsafety. For a continuous trajectory x : [0, T ] → X , if
D(x) = {t1, t2, . . . , tn}, then the minimizing index set in
Def. 2 for w(ρ(x)), say I∗ = {ti1 , . . . , tik}, is a subset of
D(x). The cost of violating a rule A is

λc(x,A) =

k∑
j=1

∫ tij+1

tij

$(A) dt ,
∫ T

0

gA(x(t))dt, (4)

where the cost function gA(x) is defined as,

gA(x(t)) =

{
$(A) if t ∈ [tij , tij+1) for some tij ∈ I∗

0 else.

gA(x(·)) is differentiable everywhere except on I∗. We now
construct the normalized continuous level of safety, call it
λc(x,Ψ), in a similar fashion as λ(w,Ψ). Note that for a
trace-inclusive Kripke structure, we have λc(x,Ψ) = λ(ξ,Ψ)
for any trace ξ and its corresponding trajectory x.

B. Problem statement

Sec. III-A motivates the form of cost functions for the
robot and the environment. For task specifications Φr,Φe,
and a set of safety rules, Ψ = {Ψ1, . . . ,Ψn}, define the cost
function of R as,

Jr(x0, ur, ue) = λc(xr,Ψ) + 2−(n+1) Tr (5)

where Tr = inf{t ∈ R≥0 : xr(t) ∈ Xr,G} and ur : [0, Tr]→
Ur. Similarly, let Te = inf{t ∈ R≥0 : xe(t) ∈ Xe,G} and
ue : [0, Te]→ Ue. Define the cost function of E to be:

Je(x0, ur, ue) = λc(xe,Ψ) + 2−(n+1) Te. (6)

Note that Jr is really the normalized, scalar form of the
lexicographic cost tuple (λc(xr,Ψ1), . . . , λc(xr,Ψn), Tr),
i.e., players first minimize the level of unsafety of the
trajectory with respect to safety rules and then prioritize
reaching the goal set as quickly as possible.

Problem 5 Given task specifications Φr,Φe, a set of prior-
itized safety rules Ψ, for dynamics described by Eqn. (3),
find a control strategy, u∗r : [0, Tr]→ Ur where Tr = inf{t :
xr(t) ∈ Xr,G}, such that:
1. Trajectories xr, xe satisfy tasks Φr,Φe respectively, and
2. Among all trajectories xr, xe respectively, that satisfy

1, (u∗r , u
∗
e), where u∗e = BR(u∗r), is the open-loop

Stackelberg equilibrium of the differential game with cost
functions Jr, Je, respectively.

Note that the necessary conditions for the OLS equilibrium
are obtained by minimization of the Hamiltonian if the dy-
namics and running cost are differentiable [22]. In our case,
even though we are guaranteed that f ∈ C1, the running cost,
shown in Eqn. (4), is discontinuous. We can however still
characterize the OLS equilibrium using viscosity solutions to
optimal control problems with discontinuous running cost.

Theorem 6 (Thm. 4.1 in [23]) Consider a dynamical sys-
tem given by ẋ(t) = f(x(t), u(t)) with x(0) = x0 where
f : Rd × Rm → Rd belongs to C1 and u(·) belongs to the
class of relaxed controls, i.e.,

u ∈ U = {u(·) : u : R≥0 → P (U) measurable}

where P (U) is the set of Radon measures over the compact
set U ⊂ Rm. For cost functionals of the form, J(x, t) =∫ t

0
g(x(s)) ds where g(x(s)) is bounded but possibility

discontinuous on a set of measure zero, there exists a
unique viscosity solution if the dynamics is small time locally
controllable.

Thm. 6 can be used to show that the solution of Prob. 5
is unique if the dynamical system in Eqn. (3) is small-time
locally controllable and if the initial conditions x0 and the
goal regions Xr,G, Xe,G are such that optimal trajectories
spend only a measure zero time at the discontinuities of
the labeling function Lc. Let us also note that under the
above assumptions, cost functions in Eqn. (5) and Eqn. (6)
are continuous in a neighborhood of the optimal trajectory.



IV. ALGORITHM

This section describes an algorithm to incrementally con-
struct the product automaton (see Def. 4 in Sec. II-C). Ideas
from sampling-based motion-planning algorithms are used
to construct Kripke structures for R and E, say Kr and
Ke, resp. Safety rules with priorities, expressed as finite
automata are used to first construct their weighted product,
i.e, AΨ = (QΨ, q0,Ψ,Σ, δΨ, FΨ,WΨ) (see Sec. II-B.1). We
then construct the weighted product automata, call them
Pr, Pe, for players R,E, respectively. For convenience, let
α ∈ {r, e}. Conceptually, these product automata are used to
compute traces corresponding to the Stackelberg equilibrium
incrementally. The algorithm however maintains two product
automata Pα,f and Pα,b for each player α, i.e., Pα =
Pα,f ∪ Pα,b. This enables some computational benefits and
helps us quickly compute best responses and corresponding
costs.

Let QPα,f and QPα,b be the set of states of Pα,f and
Pα,b, resp. QPα,f is initialized with z0,α = (s0,α, q0,Ψ) while
QPα,b is initialized with zg,α = (sg,α, qg,α) for some sg,α ∈
Xα,G and qg,α ∈ FΨ. Each sampled vertex zα is added to
both QPα,f and QPα,b ; however, transitions are made towards
zα, i.e., (∗, zα) in δPα,f while they are made away from zα,
i.e., (zα, ∗) in δPα,b . Each vertex maintains two costs, Jdα,f
and Jdα,b, where Jdα,f is the least weight of a trace reaching
zα from z0,α while Jdα,b is the least weight of a trace from
zα to zg,α in QPα,b . Let Jdα(zα) = Jdα,f (zα)+Jdα,b(zα). The
preliminary procedures below are written for Pα,f , they are
analogous for Pα,b.

a) Sampling: The sampling procedure sampleα : N→
Xα returns independent, identically distributed samples from
a distribution supported over Xα \Xα,obs.

b) Steer: Given two samples z1 = (s1, q1) and z2 =
(s2, q2) in Pα,f , the steerα procedure returns the minimum
cost of going from z1 to z2. It computes a time T ∈ R≥0

and trajectories xα : [0, T ] → Xα, uα : [0, T ] → Uα,
such that, xα, uα satisfy the dynamics ẋα = fα(xα, uα)
with x(0) = s1, x(T ) = s2 and xα is trace-inclusive
and minimizes the cost function Jα(s1, uα, ·). It returns

Algorithm 1: extendα

1 s← sampleα;
2 Z,Zrewire ← ∅;
3 foreach q ∈ QΨ do
4 z ← (s, q);
5 foreach z′ ∈ nearα(s) do
6 if steerα(z′, z) then
7 Z ← Z ∪ z;

8 foreach z ∈ Z do
9 QPα,f ← QPα,f ∪ {z};

10 QPα,b ← QPα,b ∪ {z};
11 connectα(z);
12 if s ∈ Xα,G and q ∈ FΨ then
13 FPα,f ← FPα,f ∪ {z};
14 updateα(z);
15 Zrewire ← Zrewire ∪ rewireα(z);

16 return Z,Zrewire

Algorithm 2: construct product

1 foreach α ∈ {r, e} do
2 QPα,f ← {z0,α};
3 QPα,b ← {zg,α};
4 δPα ← ∅;
5 for i ≤ n do
6 Zr, Zr,rewire ← extendr;
7 Ze, Ze,rewire ← extende;
8 update best response queue(Ze,rewire);
9 z∗r ← update best vertex;

10 delete collisions(trace(z∗r ));

11 return z∗r , Pr, Pe

Jdα,f (z1, z2) = Jα(s1, uα, ·) and returns false if such a
trajectory is infeasible or if (q1, q2) /∈ δΨ. Examples of
how the steerα procedure can be constructed for certain
dynamics can be found, for example, in [24], [25].

c) Near vertices: For a state s ∈ Xα, let Xα,near(s) ⊂
Xα ∩Kα consist of the closest k log n (k > 2) samples ac-
cording to the cost metric Jα used in the steerα procedure.
It is thus a subset of the reachable space of the dynamical
system and can be computed efficiently using the Ball-Box
Theorem (see [26] for details). The nearα procedure returns:

nearα(s) = {(s′, q) : s′ ∈ Xα,near(s), (s
′, q) ∈ QPα,f }.

d) Connect: Given a vertex z = (s, q), the connectα
procedure computes a vertex zp such that

zp = arg min
z′∈nearα(s)

Jdα,f (z′) + steerα(z′, z).

It updates the transition function as δPα,f = δPα,f \{(∗, z)}∪
{(zp, z)}, i.e., it removes all transitions to z and adds the
one that minimizes the cost of z. The weighing function is
updated to be WPα,f (zp, z) = steerα(zp, z).

e) Update: Given z ∈ QPα,f , the updateα procedure
updates the cost as, Jdα,f (z) = Jdα,f (zp) +steerα(zp, z) for
(zp, z) ∈ δPα,f .

f) Descendents: descendentsα(zα) are all vertices in
QPα,f that are reachable from zα. ancestorsα(zα) in QPα,b
are defined similarly.

g) Rewiring: For a vertex z = (s, q), if Jdα,f (z′) >

Jdα,f (z) + steerα(z, z′) for some z′ in the set nearα(s),
the rewireα procedure executes the connectα procedure
on z′. For every such z′, which requires rewiring, we call
updateα for all z′′ ∈ descendentsα(z′). Let Zrewireα be
the set of all the vertices which are rewired.

h) Compute trace: For zα ∈ QPα,f , the procedure
trace returns ξα which is the unique trace from z0,α to zα
in Pα,f concatenated with the unique trace from zα in Pα,b
to zg,α. Since the Kripke structures are trace-inclusive, we
can also construct the continuous trajectory traj(ξα) from
ξα using the steerα procedure.

i) Calculate best response: Given zr ∈ QPr,f as input,
the procedure best response returns a vertex BR(zr) ∈
QPe,f such that trace(BR(zr)) is the best response of E
if R executes trace(zr). We maintain a priority queue for
the set {Jde (ze) : ze ∈ QPe,f }, this enables us to search for
the best response of any given zr ∈ QPr,f efficiently.



j) Update best response: For every vertex ze
that is rewired, the cost, Jde,f (z′e) changes for all
z′e ∈ descendentse(ze) (and Jde,b changes for all
ancestorse(ze)). The new costs, Jdα are computed using
the update best response queue procedure.

k) Update best vertex: The algorithm incrementally
maintains the best vertex z∗r in QPr,f that minimizes the cost
of R. For a newly sampled vertex zr ∈ QPr,f , if R executes
ξr = trace(zr) and E executes ξe = trace(BR(zr)), this
procedure evaluates the cost, i.e, Jr(z0,r, ξr, ξe) and updates
the best vertex z∗r if the trajectories do not collide.

l) Delete collisions: Given a trace ξr, this procedure
removes all vertices ze from QPe,f and their descendents
whose trajectories collide with traj(ξr) and then calls the
update best response queue procedure.

The tuple (ξ∗Pr , ξ
∗
Pe

), where ξ∗Pr = trace(z∗r ) and ξ∗Pe =
trace(BR(z∗r )) is therefore the open-loop Stackelberg equi-
librium for the game played on discrete product automata.
The projections of these traces onto individual Kripke struc-
ture are ξ∗r , ξ

∗
e respectively. Trajectories x∗r = traj(ξ∗r ) and

x∗e = traj(ξ∗e ) then are the continuous-time trajectories
returned by the algorithm. Alg. 2 presents the complete
procedure for computing (ξ∗Pr , ξ

∗
Pe

).

V. ANALYSIS

This section provides an analysis of the algorithm pre-
sented in Sec. IV. We first show how the two product
automata differ. Roughly, the automaton Pr = Pr,f ∪Pr,b of
player R is such that Jdα,f for every vertex is the best cost
from z0,r. On the other hand, the automaton Pe = Pe,f∪Pe,b
of player E consists of best responses and hence the cost
of a vertex ze ∈ Pe can be larger than its optimal cost, i.e.,
without considering the trajectory of R. We omit most proofs
in the interest of space. Technical arguments presented in this
section are similar to those in [13], [15], [16].

A. Asymptotic optimality and Probabilistic completeness

Theorem 7 (Asymptotic optimality of Pr) For any vertex
zr = (sr, qr) of QPr , let xr : [0, T ] → Xr be the optimal
trajectory that minimizes Jr such that xr(0) = x0,r and
xr(T ) = sr. Then the cost Jdr,f (zr) in Alg. 2 converges to
Jr(xr) in the limit almost surely, i.e.,

P
(
{ lim
n→∞

Jdr,f (zr) = Jr(xr)}
)

= 1.

The above theorem is an application of asymptotic optimality
of the RRT∗ algorithm [15]. As a particular instance of the
above theorem, the best vertex z∗r returned by Alg. 2 also
has the optimal cost. On the other hand, the continuity of the
cost function Jr translates to E’s Kripke structure as follows.

Lemma 8 For ze = (se, qe) ∈ QPe if xe : [0, T ] → Xe is
the optimal trajectory that minimizes Je such that xe(0) =
x0,e and xe(T ) = se, then the cost Jde,f (ze) is at least as
much as Je(xe) almost surely, i.e.,

P
(
{ lim
n→∞

Jde,f (ze) ≥ Je(xe)}
)

= 1.

The proof of this is an immediate consequence of the fact
that the delete collisions procedure removes transitions
from Pe that collide with the current best trajectory of R. It
thus contains fewer transitions than the optimal RRT∗ tree.

Alg. 2 inherits probabilistic completeness from the RRT∗

algorithm (see Thm. 23 in [13]), i.e., it returns trajectories
x∗r,n and x∗e,n such that they converge to the open-loop
Stackelberg equilibrium of Prob. 5, with probability one, as
the number of samples approaches infinity. In addition to
this, we can also show the nature of convergence as follows.

Theorem 9 The trajectories returned by Alg. 2 after n
iterations, x∗r,n and x∗e,n, converge to the solution of Prob. 5
in the bounded variation norm sense,

P
(
{ lim
n→∞

‖x∗r,n − x∗r‖BV = 0}
)

= 1

and similarly for x∗e,n.

Proof: The proof of this theorem is very similar to that
of Thm. 16 in [16] and is hence omitted. Roughly, since the
Stackelberg equilibrium exists and is unique from Thm. 6,
we can show that there exists traces ξr of Kr and ξe of Ke,
that lie in the neighborhood of x∗r and x∗e . The corresponding
continuous trajectories then satisfy the claim.

Now, it easily follows that the cost of the trajectories
returned by the algorithm converges to the optimal cost.

Corollary 10 (Asymptotic optimality) The costs, Jr(x∗r,n)
and Je(x∗r,e) converge to the optimal costs in the limit with
probability one, i.e.,

P
(
{ lim
n→∞

Jr(x
∗
r,n) = Jr(x

∗
r)}
)

= 1,

and similarly for x∗e,n.

B. Computational complexity
Let us briefly discuss the computational complexity of

Alg. 2. If m is the number of states in AΨ, nearα(s)
returns O(m log n) vertices in expectation. The complexity
of running connectα these vertices is O(m2 log2 n). The
rewireα procedure considers an O(m log n) neighbors and
updates the cost of their descendants. It can be shown that the
complexity of such an update is O(m2 log2 n) in expectation.
Similarly, we see that the update best response queue

procedure also updates O(m2 log2 n) vertices in QPe,f . The
complexity of update best vertex is O(m log n) if we
maintain a priority queue of vertices in QPr,f with their best
responses.

It can be shown that the delete collisions procedure
deletes descendants of nodes in an area that scales as
O(log n/n). Also, the height of a random node in the random
Kripke structure concentrates around its expectation which
is O((n2/ log n)1/d) [27]. Thus, the delete collisions

procedure removes only a small number of descendants
beyond this height; the number of nodes deleted per iteration
in fact goes to zero in the limit as n→∞.

The total expected amortized complexity of Alg. 2 is
therefore O(m2 log2 n) per iteration.



VI. COMPUTATIONAL EXPERIMENTS

In this section, we present simulation experiments to
demonstrate the proposed algorithm in a number of different
scenarios motivated by autonomous urban driving.

A. Experimental setup

1) Dynamics: Consider a Dubins vehicle with control
on acceleration as a model for the dynamics of both the
robot and the environment with the dynamics given by,
ẋ(t) = v(t) cos(θ(t)), ẏ(t) = v(t) sin(θ(t)), v̇(t) = u1(t),
θ̇(t) = v(t) u2(t), where the state is (x, y, v, θ) with bounds
on acceleration, i.e., |u1(t)| ≤ 1 and turning rate, i.e.,
|v(t) u2(t)| ≤ c. Following a similar analysis as given
in [24], we can see that time optimal paths between two
states (x1, y1, v1, θ1) and (x2, y2, v2, θ2) for the dynamics
given above can be split into two cases, (i) constrained by the
shortest length Dubins curve, and, (ii) constrained by change
in velocity. As an approximation, in this implementation, we
only consider the first case, i.e., the steerα procedure re-
turns an infinite cost if the increment in velocity is larger than
what can be achieved along the shortest length Dubins curve.
Note that this does not affect the completeness guarantees of
Sec. V. Also note that Dubins curves for any pair (x1, y1, θ1)
and (x2, y2, θ2) are composed of straight lines and maximum
turning rate segments and can be computed efficiently [25].

2) Safety Rules: Xr, Xe are partitioned into compact non-
empty subsets Xsw, Xll, Xrl for the sidewalk, left-lane and
right-lane respectively. Atomic propositions are given by
Π = {sw, rl, ll, dir, slow}. For a state sα, sw, rl, ll are true
iff sα ∈ Xsw, Xll and Xrl, respectively. dir is true iff α is
traveling in the right direction, i.e., forward in the right-lane
(which is computed using geometry of the road). slow is
true iff sα has a velocity smaller some fixed constant Vnom.
We consider the following road-safety rules :
• Do not take a transition that leads to a sidewalk:

ψ1 = G¬(true, sw)

• Always travel in the correct direction:

ψ2,1 = G(true, dir)

• Do not change lanes:

ψ2,2 = G¬((rl, ll) ∨ (ll, rl))

• Motivated by the fact that drivers on road would not like
to slow down for each other, we include a rule which
encourages drivers to maintain the speed above Vnom.

ψ3 = G¬(true, slow)

The priorities are set as $(ψ1) = 1, $(ψ2,1) = $(ψ2,2) = 2
and $(ψ3) = 3. We use 2-tuples of Π to denote transitions
between states. The two components capture atomic propo-
sitions of the starting and ending states, respectively. The
automaton shown in Fig. 1 is the same for all these rules.

B. Examples

For the following examples, the algorithm was imple-
mented in C++ on a 2.2 GHz processor with 4 GB of memory

q1 (l, l′)

Fig. 1: Finite automaton for safety rules: E.g., l, l′ ∈ 2Π, sw /∈ l′
gives ψ1, dir ∈ l′ gives ψ2,1, while rl /∈ l, ll /∈ l′ or ll /∈ l, rl /∈ l′
gives ψ2,2 while slow /∈ l′ gives ψ3.

in the Linux environment. In Figs. 2 and 3, the Kripke
structure maintained by R is shown in white while the Kripke
structure maintained by E, i.e., Ke is shown in black. The
current trajectory for R returned by Alg. 2 is plotted in red
while the best response to this trajectory is plotted using
green. Stationary obstacles are shown in red, while Xsw is
shown in black. Right and left lanes are demarcated using
yellow lines. Goal regions for both players, Xr,G, Xe,G are
shown in red and green respectively. Both players start with
the same initial velocity Vnom.

1) Case 1: We first consider a scenario with both R and E
at a cross-road junction to demonstrate the incremental nature
of the algorithm. Fig. 2a shows the Kripke structures and the
solution after 400 samples. It returns paths with cost 2.4231
for R which is close to optimal, but in order to satisfy the
task specification without colliding with R, player E breaks
the slow driving rule and incurs a cost of 6.819. Fig. 2b
shows this path after 1000 samples.

(a) (b)

Fig. 2: Fig. 2a sub-optimal trajectories with sparse Kripke struc-
tures. As shown in Fig. 2b, with more samples, the algorithm
converges to a trajectory for E that has a much smaller cost. Both
cars are drawn at the same instant in time.

2) Case 2: In this example, we consider a single-lane
road with an obstacle in the lane of R. Fig. 3a shows the
algorithm after 500 samples where the environment cannot
find any trajectory that reaches its goal without colliding with
the trajectory that R would like to execute. With additional
computation time, as shown in Fig. 3b, E obtains a trajectory
that has a cost of 3.65 without breaking any safety rules. On
the other hand, R incurs a penalty for breaking the lane
changing rule and obtains a best cost of 13.95.

3) Case 3: Consider a slight modification of Case 2 where
the environment starts closer to the obstacle than before. As
shown in Fig. 3c, R now forces the Stackelberg equilibrium
upon player E and by still choosing the same trajectory. In
order to avoid a collision, i.e., generate a valid best response
that still satisfies the task specification, E slows down and
incurs a cost for breaking rule ψ3 to let R cross across the
obstacle.



(a)

(b)

(c)

Fig. 3: Fig. 3a shows the Kripke structures when player E which
starts at the root of the black tree does not have any trajectory to
reach the goal region. The algorithm converges to the trajectories
shown in Fig. 3b. On the other hand, as shown in FIg. 3c, if E
starts closer to the obstacle, it is forced to obey the Stackelberg
equilibrium and has to slow down to let R cross the obstacle.

VII. CONCLUSIONS

This paper addresses the problem of computing open-
loop equilibria for two-player, non-zero sum differential
games where players accomplish a task specification while
satisfying safety rules expressed using temporal logic. Ideas
from sampling-based motion-planning algorithms and model
checking literature are used to incrementally construct
weighted product automata where the weight of a trace is
representative of its level of unsafety with respect to the
safety rules. We propose an algorithm to compute the Stack-
elberg equilibrium and provably converge to the continuous
time equilibrium as the number of samples in the Kripke
structures go to infinity. The algorithm is demonstrated on
a number of examples motivated from autonomous urban
mobility on demand systems.

Directions for future work consist of computing feedback
equilibria and considering safety rules that depend on both
players to enable a richer class of behaviors.
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