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Abstract—In this paper we propose two alternatives to over-
come the natural asynchrony of modalities in Audio-Visual
Speech Recognition. We first investigate the use of asynchronous
statistical models based on Dynamic Bayesian Networks with
different levels of asynchrony. We show that audio-visual models
should consider asynchrony within word boundaries and not at
phoneme level. The second approach to the problem includes
an additional processing of the features before being used
for recognition. The proposed technique aligns the temporal
evolution of the audio and video streams in terms of a speech-
recognition system and enables the use of simpler statistical
models for classification. On both cases we report experiments
with the CUAVE database, showing the improvements obtained
with the proposed asynchronous model and feature processing
technique compared to traditional systems.

I. INTRODUCTION

Visual information can improve the performance of audio

speech recognition systems, specially in presence of noise.

The improvement is due to the complementary nature of the

audio and visual modalities, as the visual information can help

discern sounds easily confusable by ear but distinguishable by

eye. The design of such an audio-visual system requires a

fusion strategy for the different modalities, which constitutes

a key topic on multimodal signal processing [1]. The fusion

techniques should consider the asynchrony between the audio

and visual modalities intrinsic to human speech where, for

instance, the movement of the lips precedes or follows the

actual production of sound at beginning or end of utterances.

That asynchrony is a complex issue, as it is not a constant time

delay between audio and video signals but changes with time,

is context-dependent due to co-articulation effects and depends

on the visibility and asynchrony of visible articulatory features

as lips, teeth and tongue [2].

The statistical models commonly used in Audio-Visual

Speech Recognition (AVSR) are multistream Hidden Markov

Models, the natural extension of the Hidden Markov Models

(HMM) used in audio speech recognition. However, several

works [3], [4], [5] have proved the benefits of the more

general Dynamic Bayesian Network (DBN) models allowing

asynchrony between the audio and the visual streams. In that

case, DBNs need to define some synchronization points for

the models. These works reported that DBN word models
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imposing synchrony at word boundaries outperformed HMM-

based ones. However, working with word models is restricted

to small vocabulary tasks and the extension of the same

asynchrononous DBNs to phoneme models did not obtain

better results than phoneme multistream HMMs [6].

In this paper, we show that the use of DBNs is also benefi-

cial for phoneme models when the synchonization constraints

are correctly defined. We establish that the correct way to

treat asynchrony in audio-visual speech recognition is within

word boundaries and propose a new DBN phoneme model

able to exploit its asynchrony without being limited to small

vocabulary tasks. Our model thus enjoys the benefits of the

DBNs documented in [3], [4], [5] overcoming the problems

encountered by Graviet et al when extending their use to

phonemes and large vocabulary tasks [6].

Analyzing recognition experiments with the standard

CUAVE database [7], where our model outperforms the exist-

ing DBN ones, we develop an alternative strategy to overcome

audio-visual asynchrony while working with a simple mul-

tistream HMM. The proposed technique introduces an extra

processing step on the extracted audio and visual features in

order to reduce the complexity of the subsequent statistical

models. Such an approach is interesting as extensive work has

been conducted on stream weighting for multistream HMMs,

while it is not a so well-studied issue in DBNs.

The paper is organized in several sections as follows: the

different (a)synchronous statistical models for audio-visual

speech recognition are presented in section II and a new

DBN phoneme model proposed. Based on those models, in

section III we develop a processing technique designed to

overcome the asynchrony of the feature streams while working

with synchronous models. Section IV reports experiments

comparing the proposed model and processing techniques to

the state-of-the art and conclusions are drawn in section V.

II. AUDIO-VISUAL MODELS IN SPEECH RECOGNITION

Audio-Visual Speech Recognition systems estimate the

probability of a word or sentence by building statistical models

of basic speech units given the observed audio and visual

features oA, oV . On real-world tasks, those speech units are

based on phonemes, as it is unfeasible to learn specific

models for every word in the vocabulary. Instead, words are

expressed in terms of phonemes, models for each phoneme are



learned and then whole-word models are created concatenating

phoneme models. We focus, therefore, on the use of phonemes

for speech recognition.

Multistream HMMs are the traditional tools used to model

those phonemes [8], but they are examples of a more general

statistical model, Dynamic Bayesian Networks, recently also

used for speech recognition [5], [9]. In the following section

we present (a)synchronous models used in AVSR in the con-

text of DBNs, compare them in terms of synchrony constraints

and propose a new one.

A. Dynamic Bayesian Networks

Bayesian Networks are directed acyclic graphs represent-

ing dependencies between variables in a probabilistic model.

Variables are depicted as nodes in the network while arcs

represent a conditional probability relation between the nodes

they connect. A directed arc from node A to node B implies

that B (called descendent or child node) is conditionally

dependant on A (parent node). In a Bayesian Network each

node is conditionally independent from its non-descendent

given its parents. Dynamic Bayesian Networks are their natural

extension when the variables are stochastic processes and we

have Bayesian Networks in space and time. A HMM can thus

be represented as a DBN, see figure 1a1, where the hidden state

is the parent of the observation variable and the state transition

probabilities are encoded in the directed arcs between the state

variables. DBNs, however, allow for a more general graph

structure and flexible models than HMMs.

In AVSR the model parameters to estimate are the transition

probabilities between audio and visual states αi,j = p(q(t +
1) = qj |q(t) = qi)) and probability distributions of the audio

and visual observations for each state p(o|qi). Taking into

account the use of left-to-right models in speech, the number

of parameters to estimate is then O(N), where N corresponds

to the number of states in our models. Maximum likelihood

estimates of those parameters are computed with different

implementations of the generalized Expectation-Maximization

(EM) algorithm. In the case of HMMs, the Baum-Welch

and Viterbi algorithms are used for parameter estimation and

recognition [8], with respective time complexities O(N2T )
and O(NT ), where T denotes the number of samples in the

training or testing utterance. As parameter estimation is done

once to build the system while recognition is constantly used,

in the following we will only refer to the time complexity

associated to recognition stage. For DBNs in general, imple-

mentations of the generalized EM are available for speech

recognition, but their time complexity increases considerably

[10], [9].

Our models assume stream independence for the combined

observation likelihood p(oA, oV |qj ) = p(oA|qj )p(oV |qj ) and

fit a Gaussian mixture to the audio and visual observations

associated to each state. The complexity and estimation of

1On the DBN schemas, we will represent hidden state nodes q as rectangles,
observation nodes as circles and smaller black circles as synchronization
points of the models. The label A,V,AV on states and observations indicates
their modality Audio, Video or Audio-Visual

(a) HMM (b) MSHMM
Fig. 1: DBN structure of HMMs

(a) IHMM (b) CHMM

Fig. 2: Asynchronous phoneme models

those Gaussian mixtures is the same for all the models we

will present, which will differ on the transition probability

parameters associated to different synchrony constraints.

More complex stream fusion strategies can also be applied,

but we do not adopt them because their effects on training

and testing of AVSR systems have only been well-studied on

MSHMM and not on more complex DBN models.

B. Synchronous Audio-Visual model

A multistream HMM (MSHMM), see figure 1b, assumes

that the audio and video sequences are independent but state

synchronous. The transition probabilities αAV
i,j needs to be

estimated for each of the N states of the P phonemes in

our vocabulary, leading to a complexity O(NP ) in terms of

number of parameters and O(TNP ) in recognition time for

Viterbi.

C. Asynchronous Audio-Visual models

The assumption that the streams come from synchronous

sources of information is valid when modelling information

from the same modality, but that is not the case in AVSR

systems. We can think of a HMM-like model representing

each hidden state of the MSHMM as a pair of audio and

visual states, allowing state asynchrony within the phoneme

and forcing synchrony at model boundaries. Usual models of

that kind include the independent HMM (IHMM), the product

HMM, the coupled HMM (CHMM) and the factorial HMM. A

good overview of those existing models and their complexity

can be found in [5].

In this paper, we focus on IHMM and CHMM, which

model independently the state observations of each stream

but make different assumptions about their state evolution.

IIHMMs assume independent state transitions of each stream

while CHMMs allow the audio and visual states to interact

with respect to their time evolution. Their DBN representation

is presented in figure 2a and 2b, where we can see that

both models allow more flexibility than the MSHMM in

terms of synchrony. The IHMM, however, fails to model any

correlation between the evolution of the audio and visual



Fig. 3: Word ’two’ built from concatenation phoneme IHMMs

Fig. 4: Word ’two’ built from concatenation of phoneme

pHMMs

components while in the CHMM the coupling of states across

streams accounts for this correlation. Actually those models

can be build as non -eft-to-right MSHMMs with N2 states

qAV
i,j = (qA

i , qV
j ) properly tying the Gaussian mixtures of the

composed states

p(oA, oV )|qAV
i,j ) = p(oA)|qA

i )p(oV )|qV
j )

In IHMMs we have to factorize the transition probabilities as

αAV
(i,j),(k,l) = αA

i,kαV
j,l while in the CHMM we must consider a

particular transition matrix structure in the N2-state MSHMM

[5]. That implementation leads respective parameter complex-

ities of O(2NP ) and O(N2P ) for the IHMM and CHMM

and O(NPT ) for the recognition time in both cases[5]. As

usually N = 3 for phonemes is smaller than the number of

words in the vocabulary, the complexity of a system based in

IHMMs and CHMMs are similar between each other and to

a MSHMM one.

D. Proposed asynchronous model

In the phoneme models previously presented, the synchro-

nization points are the phoneme boundaries, but it is not

necessarily the case for phoneme models based on DBNs.

Indeed, we know that the delay between modalities can reach

120 ms [11], which surpasses the mean duration of phonemes.

We thus propose to use two independent HMMs for each

phoneme forcing synchronism at word boundaries once the

constituting phonemes of the word are concatenated. We call

that model piece-wise HMM (pHMM). Figure 3 and 4 show

the DBN representation of words with IHMMs and pHMMs.

It is important to note that those models are not word IHMMs

[3], [2], [4], whose grouped states correspond to phonemes.

Such a system would be defining word-depending phoneme

models, which can only be used in reduced vocabulary tasks.

We propose the use of independent phoneme models for the

audio and visual domains, glued together for audio-visual

recognition and with synchrony constraints imposed consider-

ing the words they form. The pHMM allows more flexibility

in terms of asynchronism and is robust to co-articulation

effects without building context-dependent phoneme or word

models. When a certain phoneme presents different levels of

asynchrony depending on the word or neighboring phonemes,

our model does not impose any learnt asynchrony model

for that word or context, but decides on testing between

the possible words and asynchrony patterns. Those models

can not be implemented as MSHMMs and their parameters

must be estimated with the generalized EM-algorithm. The

number of parameters to estimate is of order O(2NP ) as

they have independent transition probabilities for the audio

and video streams and O(N2V T ) for the time complexity

of the recognition stage, where V is the number of words in

our vocabulary [12]. We see that the major flexibility of that

model does not increase the number of parameters to train,

but the complexity of recognition stage is considerably higher

as the size of the vocabulary surpasses that of phonemes in

real applications and large vocabulary tasks.

Unlike the biphone models presented in [13], pHMMs

have no restrictions on the degree of asynchrony within a

word or are context dependent. This last approach increases

dramatically the amount of necessary training data and is thus

restricted to few audio-visual databases. Such is an important

limitation for training of the system, as the most extensive

audio-visual databases consists on recordings of natural meet-

ings and their visual modality is usually too challenging for

training due to mouth tracking issues, changing illuminations

and speaker poses [14].

III. PROPOSED PROCESSING TECHNIQUE

In audio speech recognition it is well know that simpler

statistical models can be used for recognition if the observed

features are additionally processed, for instance, to include

information of the subsequent recognition classes in tandem

HMM approaches [15]. In that section we present such an

alternative for audio-visual speech recognition, preprocessing

the features that will be used as visual observations in subse-

quent MSHMM classifiers. The visual features are warped to

the temporal evolution of the audio mimicking the behaviour

of asynchronous DBN models compared to HMMs.

A. Preliminary idea based on model analysis

Previous works [3], [4], [5] and our own experiments,

see section IV, show the benefits of allowing audio-visual

asynchrony within word boundaries. Analyzing why those

asynchronous DBN models work better than the traditional

MSHMMs, we develop a processing technique to overcome

asynchrony by an additional processing step on visual features

when MSHMMs are used for recognition.

Figures 5 and 7 show an schema of word models based

on MSHMMs and DBNs successfully applied to overcome

asynchrony.2 Assuming that there is a word utterance between

the time instants t0 and t1, the DBN and the MSHMM model

differ only on the synchronization points: the MSHMM forces

the state variable of both streams to be the same at each time

instant, qA(t) = qV (t) t0 ≤ t ≤ t1, while the DBN model

just imposes synchrony on the initial and last frame of the

words t0 and t1.

In speech recognition, the temporal evolution of the ob-

served features oA(t) and oV (t) is described by the evolution

2Note that we can also work with phoneme MSHMMs and consider
the word MSHMM obtained from the concatenation of their constituting
phonemes.



Fig. 5: MSHMM model for a word

Fig. 6: Time partition of a word interval by their DBN modelling

Fig. 7: DBN asynchronous word model

Fig. 8: Piece-wise definition of f

of the state variable in the corresponding statistical models.

Those models define audio SA =
{

SA
1 , . . . ,SA

n

}

and video

SV =
{

SV
1 , . . . ,SV

n

}

partitions of the time interval (t0, t1),
where SA

i corresponds to the time subinterval in which the

audio state of models was qA
i . Figure 6 shows a graphical

representation of those time partitions of (t0, t1). For the

MSHMM SA and SV coincide while the asynchronous DBN

model allows the audio and video partition to differ within

word boundaries.

The graphical representation of the problem suggests how to

obtain a system performing equally to the DBN, but working

with the simpler MSHMM and processed visual features õV .

The processed feature streams should have the same state

evolution, i.e. qA(t) = q̃V (t) but still be as close as possible to

the original stream oV . We could modify the temporal variable

of the video stream õV (t) = oV (f(t)), with f defined piece-

wisely expanding and contracting each SV
i to fit SA

i , so that

qA(t) = q̃V (t). See figure 8. That reasoning assumes that both

audio and video HMMs have decided on a word with the same

number of state, which is not always the case. Indeed, with

single-stream HMMs we can just have the state partition SA

and SV of each modality individually, where the start and end

of the detected words and the number of states of the word

recognized by each stream might be different. In those cases

we could not expand and contract the partitioned intervals in

a one-to-one basis. We can, however, take the audio modality

as model for the time evolution of the features within word

boundaries and adapt the visual features to it. Note that the

audio modality is taken as model because it is the most reliable

stream for recognition of speech, specially for silences. In the

following, we denote SA the time partition obtained with an

audio-only system applied to the audio stream.

The time clustering of the observed features oA(t) and oV (t)
explains the definition of the time partitions SA and SV .

Within any SA
i the audio is in the same model state qA

i , whose

observations in our HMMs and DBNs are modeled with the

same Gaussian mixture. On the contrary, samples indexed by

SA
i−1 and SA

i are modelled with different Gaussian mixtures

and belong to different clusters on the feature space. Indeed,

when performing recognition, a sample o(t) will be assigned

to state qi or qi+1 depending mainly3 on the likelihoods

p(o(t)|qi+1 ) and p(o(t)|qi+1 ).

B. Proposed pre-processing of features

For each interval (t0, t1) where a word is recognized, our

goal is to adapt the time variations of oV so that its state

partition coincides with SA while keeping the feature values

close to the originals, that is, we construct a new visual feature

vector õV from oV samples taking into account the clustering

in time of the audio stream. For each SA
i , we define the õV

video features associated to it taking the necessary samples

of the original oV corresponding to time instants from the

central region of SA
i and indexing them as if they came from

a uniform time sampling on SA
i . We force in this way the

time clustering of the new stream, and consequently its state

partition, to be closer to the audio one. That is explained by

the fact that we do not have a real analogue signal oV (t),
but periodical samples from some visual feature from which

we can construct a continuous version of oV (t). When we

say that we take samples associated to time instants central to

SA
i , as the video rate is kept, in fact we are interpolating

oV (t) in SA
i in order to increase the number of samples

associated to the center of the subinterval and neglect the rest.

As the interpolation is associated to an up-sampling and low-

pass filtering process, when the obtained samples from oV are

treated as coming from a uniform sampling of õV in SA
i , the

resulting feature stream presents a cluster in the central part

of each subinterval SA
i .

The procedure that we propose is the following: we use an

audio-only HMM system to obtain the state partition of the

time intervals SA, we up-sample oV and form a new õV from

the necessary samples associated to time instants close to the

center of each SA
i . Assuming that for the subinterval SA

i we

have Ni periodic samples of oV , we can obtain the corre-

sponding analog signal oV (t) by any smoothing interpolation

3The state transition probability of the HMM and the surrounding frame
likelihoods also affect the decisions taken on the Viterbi decoder because of
the forward path limitation of the HMMs, but as those transition probabilities
are more or less similar for all the states and the surrounding frames at certain
time instant are the same, the decision of assigning a sample to certain state
or the following depends mainly on the observation likelihoods of the states



method we prefer. We then sample that signal at the sorted

time instants drawn from a normal distribution with mean the

center of SA
i and variance with associated 90% confidence

interval of the gaussian in relation 1
n

to the lenght of SA
i .

In our implementation, we used cubic spline interpolation,

values n = 1, 2, 4, 8 and restricted the Ni sampling instants

to lie within the interval SA
i . The resulting samples of oV (t)

are treated as if they came from a periodic sampling of the

cotinuous signal õV (t), which in fact does not need to be

constructed.

The choice of the parameter σ in relation to the length of

each time subinterval is done based on the results obtained

with an evaluation set.

IV. EXPERIMENTS AND RESULTS

We perform continuous speechreading experiments on the

CUAVE database. We use the static portion of the ’isolated

digits’ section of the database, consisting of 36 speakers

repeating the digits five times. Our experiments are speaker

independent, using 6-fold cross validation with 30 speakers

for training, 3 for evaluation and 3 for testing. The results are

given in terms of word accuracy.

The audio features used are normalized mel-frequency cep-

stral coefficients with their first and second temporal deriva-

tives. We train any model parameters on clean audio data and

artificially add white noise on testing with Signal to Noise

Ratios (SNR) ranging from clean to 0 dB. The visual features

are selected DCT coefficients on a region of interest defined

around the mouth, which consists of a 128x128 image of the

speaker’s mouth, normalized for size, centred and rotated. The

DCT coefficients are the 15 most important ones taken in a

zig-zag order, as in the MPEG/JPEG standard, together with

first and second temporal derivatives and their means removed.

No noise is added to the visual features.

A. Experiments on modeling

For all the experiments, the phoneme models are made of 3

hidden states with independent audio and visual observations

described by Gaussian mixtures with diagonal covariance

matrices. As the Expectation Maximization is an optimization

algorithm finding local minima, which makes the choice of the

initial parameters a critical issue, we obtained initial estimates

of the parameters by separate training of audio and video-only

HMMs before jointly retraining the audio-visual models. We

used the GMTK toolkit [10] to build and train audio-visual

models for the MSHMMs, IHMMs, CHMMs and pHMMs

already described.

The results obtained are presented in table I, where the

video-only word accuracy is 62.22%. They show that the

asynchrony goes beyond phonemes and that allowing asyn-

chronous phoneme models does not outperform the traditional

MSHMM properly trained under the different SNR conditions.

The CHMM only obtains better recognition performance than

the MSHMM in low-noise conditions, whereas the proposed

pHMM outperforms it through all the SNRs. In relation to

the CHMM and IHMM, we see that the state evolution of the

TABLE I: Word accuracy of different asynchronous models

SNR audio HMM MSHMM IHMM CHMM pHMM

clean 97.4 97.9 97.9 98.0 97.9
25 dB 97.3 97.8 97.8 98.0 97.8
20 dB 96.8 97.6 97.4 97.8 97.7
15 dB 94.2 95.6 95.4 95.4 96.5
10 dB 87.9 91.7 91.2 91.9 93.0
5 dB 74.2 82.2 80.3 81.9 86.1
0 dB 48.9 62.2 54.7 58.6 71.4

streams are not independent, as the coupled system exploits

the temporal correlation of the audio and visual streams to

obtain better performance.

In order to analyze if the improvement obtained with

the proposed model is significant and coherent through the

different train-test sets and SNRs, we performed a Wilcoxon

signed rank test comparing the results of each asynchronous

model with the synchronous MSHMM. The null hypothesis

being that the corresponding asynchronous model outperforms

the MSHMM, we obtained p-values of 0.03, 0.40 and 0.97

for IHMM, CHMM and pHMM, respectively. We we can

thus only state that introducing asynchrony on the models is

beneficial for the pHMM through all SNRs levels, which can

not be stated with the other DBN phoneme models. These

results prove that audio-visual asynchrony in speech goes

beyond phoneme level.

B. Experiments on feature processing

To test the alternative proposed processing technique, we

have applied it to the same AVSR framework, using the audio

stream and MSHMM speech recognizers already explained but

with two different video streams. For the first stream we used

directly the extracted visual features and for the second stream

we applied the proposed processing technique with different

values of the parameter σ. In experiments with the evaluation

set the best performance was obtained adjusting σ to fit the

90% confidence interval of the Gaussian to half of the length

of each SA
i , that same value was retained for testing.

We present results with both a weighted and non-weighted

MSHMMs. The first ones allow us to compare the proposed

modeling and feature processing approaches to overcome

asynchrony, while a weighted MSHMM is the current state-

of-the-art in AVSR. The weighted and non-weithed results,

however, can not be directly compared, as they were obtained

with different software toolkits, GMTK for the non-weighted

systems and HTK [16]for the weighted one, as the former does

not allow for the use of different audio and video weights.

In the weighted MSHMM, the fusion strategy is based on

weighing the likelihoods of the audio and visual observa-

tions for each state p(oA, oV |M) = p(oA|M)λAp(oV |M)λV .

Separately training the audio and visual models with clean

audio data, we assume independency of the audio and visual

observations and set both weights to one. However, testing

the system with different SNR audio data, we choose the

best weights (in terms of the performance on the evaluation

set) for each SNR from the possible combinations satisfying



TABLE II: Word accuracy for the original and processed

feature streams

Accuracy non-weighted weighted

SNR A AV AṼ A AV AṼ

clean 97.4 97.9 97.9 98.5 98.4 99.1
25 dB 97.3 97.8 97.9 97.0 97.0 98.3
20 dB 96.8 97.6 97.7 96.2 94.4 98.1
15 dB 94.2 95.6 96.0 94.2 90.3 95.3
10 dB 87.9 91.7 92.2 88.5 82.5 92.1
5 dB 74.2 82.2 83.0 73.9 74.7 83.2
0 dB 48.9 62.2 63.7 49.97 65.6 69.8

λA + λV = 1 and ranging from 0 to 1 at 0.05 steps.

The results are shown in table II compared to an audio-

only HMM system. We observe that the proposed technique,

denoted AṼ , outperform both the traditional audio-visual sys-

tem AV and the audio-only one A. Compared to the modelling

approach, the processing technique does not perform as well as

the proposed asynchronous model, even though it obtains bet-

ter results than the asynchronous IHMM and CHMM phoneme

models. For the weighted strategy implemented in HTK, the

AV system performs worse than the audio-only system for high

SNR conditions. This degradation is due to the state synchrony

assumption of the MSHMM, which is too constraining, but

also to the mismatch between the weights at training and

testing conditions. Such a mismatch is unavoidable if we do

not want to train a system for each possible SNR condition.

Training the MSHMM those weights affects the association of

the training example to one state or another of the MSHMM

depending on the clustering of the audio and visual features.

Setting λA > λV favours the definition of audio-visual states

according to the clustering of the audio stream and viceversa

for λV > λA. It is natural, then, that the mismatch on the

weights does not affect so much the modified stream, where

audio and video clusters are similar. In the experiments, the

AṼ system manages to profit from the visual modality through

all SNR levels, specially in noisy conditions. In that case we

also performed a Wilcoxon signed rank hypothesis test for the

AṼ outperforming the AV system and obtained a p-value of

0.89, showing that the results are also statistically significant.

V. CONCLUSIONS

Our work proves that audio-visual asynchronism in speech

recognition goes beyond the phoneme level and that word

boundaries constitute a good choice for stream synchroniza-

tion models. The proposed pHMM model exploits the DBN

possibilities defining phoneme models with word synchrony

and offers a good trade-off between vocabulary size and the

amount of training data needed, not provided by asynchronous

word or context-dependent models.

We also show that it is possible to reduce the audio-

visual asynchrony effects by an additional processing of the

feature streams while working with synchronous MSHMM

models. The proposed technique aligns the visual stream to

the temporal evolution of the audio in terms of the speech-

recognition system. Such an approach is interesting because it

enables the use of MSHMMs, for which more weighting and

fusion strategies have been developed.
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